scholarly journals Bias correction method for climate change impact assessments in the Philippines

Author(s):  
Cho Thanda NYUNT ◽  
Toshio KOIKE ◽  
Pactricia Ann J. SANCHEZ ◽  
Akio YAMAMOTO ◽  
Toshihoro NEMOTO ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1516
Author(s):  
Tse-Yu Teng ◽  
Tzu-Ming Liu ◽  
Yu-Shiang Tung ◽  
Ke-Sheng Cheng

With improvements in data quality and technology, the statistical downscaling data of General Circulation Models (GCMs) for climate change impact assessment have been refined from monthly data to daily data, which has greatly promoted the data application level. However, there are differences between GCM downscaling daily data and rainfall station data. If GCM data are directly used for hydrology and water resources assessment, the differences in total amount and rainfall intensity will be revealed and may affect the estimates of the total amount of water resources and water supply capacity. This research proposes a two-stage bias correction method for GCM data and establishes a mechanism for converting grid data to station data. Five GCMs were selected from 33 GCMs, which were ranked by rainfall simulation performance from a baseline period in Taiwan. The watershed of the Zengwen Reservoir in southern Taiwan was selected as the study area for comparison of the three different bias correction methods. The results reveal that the method with the wet-day threshold optimized by objective function with observation rainfall wet days had the best result. Error was greatly reduced in the hydrology model simulation with two-stage bias correction. The results show that the two-stage bias correction method proposed in this study can be used as an advanced method of data pre-processing in climate change impact assessment, which could improve the quality and broaden the extent of GCM daily data. Additionally, GCM ranking can be used by researchers in climate change assessment to understand the suitability of each GCM in Taiwan.


2012 ◽  
Vol 9 (11) ◽  
pp. 12765-12795 ◽  
Author(s):  
C. Teutschbein ◽  
J. Seibert

Abstract. In hydrological climate-change impact studies, Regional Climate Models (RCMs) are commonly used to transfer large-scale Global Climate Model (GCM) data to smaller scales and to provide more detailed regional information. However, there are often considerable biases in RCM simulations, which have led to the development of a number of bias correction approaches to provide more realistic climate simulations for impact studies. Bias correction procedures rely on the assumption that RCM biases do not change over time, because correction algorithms and their parameterizations are derived for current climate conditions and assumed to apply also for future climate conditions. This underlying assumption of bias stationarity is the main concern when using bias correction procedures. It is in principle not possible to test whether this assumption is actually fulfilled for future climate conditions. In this study, however, we demonstrate that it is possible to evaluate how well bias correction methods perform for conditions different from those used for calibration. For five Swedish catchments, several time series of RCM simulated precipitation and temperature were obtained from the ENSEMBLES data base and different commonly-used bias correction methods were applied. We then performed a differential split-sample test by dividing the data series into cold and warm respective dry and wet years. This enabled us to evaluate the performance of different bias correction procedures under systematically varying climate conditions. The differential split-sample test resulted in a large spread and a clear bias for some of the correction methods during validation years. More advanced correction methods such as distribution mapping performed relatively well even in the validation period, whereas simpler approaches resulted in the largest deviations and least reliable corrections for changed conditions. Therefore, we question the use of simple bias correction methods such as the widely used delta-change approach and linear scaling for RCM-based climate-change impact studies and recommend using higher-skill bias correction methods.


2015 ◽  
Vol 31 (3) ◽  
pp. 241-252 ◽  
Author(s):  
Donghyuk Kum ◽  
Younsik Park ◽  
Young Hun Jung ◽  
Min Hwan Shin ◽  
Jichul Ryu ◽  
...  

2012 ◽  
Vol 16 (9) ◽  
pp. 3391-3404 ◽  
Author(s):  
U. Ehret ◽  
E. Zehe ◽  
V. Wulfmeyer ◽  
K. Warrach-Sagi ◽  
J. Liebert

Abstract. Despite considerable progress in recent years, output of both global and regional circulation models is still afflicted with biases to a degree that precludes its direct use, especially in climate change impact studies. This is well known, and to overcome this problem, bias correction (BC; i.e. the correction of model output towards observations in a post-processing step) has now become a standard procedure in climate change impact studies. In this paper we argue that BC is currently often used in an invalid way: it is added to the GCM/RCM model chain without sufficient proof that the consistency of the latter (i.e. the agreement between model dynamics/model output and our judgement) as well as the generality of its applicability increases. BC methods often impair the advantages of circulation models by altering spatiotemporal field consistency, relations among variables and by violating conservation principles. Currently used BC methods largely neglect feedback mechanisms, and it is unclear whether they are time-invariant under climate change conditions. Applying BC increases agreement of climate model output with observations in hindcasts and hence narrows the uncertainty range of simulations and predictions without, however, providing a satisfactory physical justification. This is in most cases not transparent to the end user. We argue that this hides rather than reduces uncertainty, which may lead to avoidable forejudging of end users and decision makers. We present here a brief overview of state-of-the-art bias correction methods, discuss the related assumptions and implications, draw conclusions on the validity of bias correction and propose ways to cope with biased output of circulation models in the short term and how to reduce the bias in the long term. The most promising strategy for improved future global and regional circulation model simulations is the increase in model resolution to the convection-permitting scale in combination with ensemble predictions based on sophisticated approaches for ensemble perturbation. With this article, we advocate communicating the entire uncertainty range associated with climate change predictions openly and hope to stimulate a lively discussion on bias correction among the atmospheric and hydrological community and end users of climate change impact studies.


2021 ◽  
Vol 25 (6) ◽  
pp. 3493-3517
Author(s):  
Hossein Tabari ◽  
Santiago Mendoza Paz ◽  
Daan Buekenhout ◽  
Patrick Willems

Abstract. General circulation models (GCMs) are the primary tools for evaluating the possible impacts of climate change; however, their results are coarse in temporal and spatial dimensions. In addition, they often show systematic biases compared to observations. Downscaling and bias correction of climate model outputs is thus required for local applications. Apart from the computationally intensive strategy of dynamical downscaling, statistical downscaling offers a relatively straightforward solution by establishing relationships between small- and large-scale variables. This study compares four statistical downscaling methods of bias correction (BC), the change factor of mean (CFM), quantile perturbation (QP) and an event-based weather generator (WG) to assess climate change impact on drought by the end of the 21st century (2071–2100) relative to a baseline period of 1971–2000 for the weather station of Uccle located in Belgium. A set of drought-related aspects is analysed, i.e. dry day frequency, dry spell duration and total precipitation. The downscaling is applied to a 28-member ensemble of Coupled Model Intercomparison Project Phase 6 (CMIP6) GCMs, each forced by four future scenarios of SSP1–2.6, SSP2–4.5, SSP3–7.0 and SSP5–8.5. A 25-member ensemble of CanESM5 GCM is also used to assess the significance of the climate change signals in comparison to the internal variability in the climate. A performance comparison of the downscaling methods reveals that the QP method outperforms the others in reproducing the magnitude and monthly pattern of the observed indicators. While all methods show a good agreement on downscaling total precipitation, their results differ quite largely for the frequency and length of dry spells. Using the downscaling methods, dry day frequency is projected to increase significantly in the summer months, with a relative change of up to 19 % for SSP5–8.5. At the same time, total precipitation is projected to decrease significantly by up to 33 % in these months. Total precipitation also significantly increases in winter, as it is driven by a significant intensification of extreme precipitation rather than a dry day frequency change. Lastly, extreme dry spells are projected to increase in length by up to 9 %.


2013 ◽  
Vol 10 (6) ◽  
pp. 6847-6896
Author(s):  
D. L. Jayasekera ◽  
J. J. Kaluarachchi

Abstract. This study extended the work of Kim et al. (2008) to generate future rainfall under climate change using a discrete-time/space Markov chain based on historical conditional probabilities. A bias-correction method is proposed by fitting suitable statistical distributions to transform rainfall from the general circulation model (GCM) scale to watershed scale. The demonstration example used the Nam Ngum River Basin (NNRB) in Laos which is a rural river basin with high potential for hydropower generation and significant rain-fed agriculture supporting rural livelihoods. This work generated weekly rainfall for a 100 yr period using historical rainfall data from 1961 to 2000 for ten selected weather stations. The bias-correction method showed the ability to reduce bias of the mean values of GCMs when compared to the observed mean amount at each station. The simulated rainfall series is perturbed using the delta change estimated at each station to project future rainfall for the Special Report on Emission Scenarios (SRES) A2. GCMs consisting of third generation coupled general circulation model (CGCM3.1 T63) and European center Hamburg model (ECHAM5) projected an increasing trend of mean annual rainfall in the NNRB. Seasonal rainfall percent changes showed an increase in the wet and dry seasons with the highest increase in the dry season mean rainfall of about 31% from 2051 to 2090. While the GCM projections showed good results with appropriate bias corrections, the Providing REgional Climates for Impacts Studies (PRECIS) regional climate model significantly underestimated historical behavior and produced higher mean absolute errors compared to the corresponding GCM predictions.


Sign in / Sign up

Export Citation Format

Share Document