scholarly journals CLIMATE CHANGE AND LAND USE CHANGE IMPACT ANALYSIS IN A DATA SPARSE WATERSHED USING A HYDROLOGICAL MODEL

Author(s):  
Maochuan HU ◽  
Kaoru TAKARA ◽  
Pingping LUO ◽  
Bin HE ◽  
Weili DUAN
2012 ◽  
Vol 7 (5) ◽  
pp. 573-581 ◽  
Author(s):  
Subashisa Dutta ◽  
◽  
Shyamal Ghosh

Being the highest specific discharge river in the world, the Brahmaputra has a large floodplain area of 700 km in length in its middle reaches falling in the high flood vulnerability category. Floods generated in upland Himalayan catchments are mainly controlled by land use and land cover, storm characteristics, and vegetation dynamics. Floods propagate through a floodplain region consisting of wetlands, paddy agriculture, and wide braided river reaches with natural constraint points (nodals) that make the reaches more vulnerable to flood hazards. In this study, a macroscale distributed hydrological model was used to obtain the flood characteristics of the reaches. A hydrological model with spatially distributed input parameters and meteorological data was simulated at (1 km × 1 km) spatial grids to estimate flood hydrographs at the main river and itsmajor tributaries. Aftermodel validation, “best guess” land use change scenarios were used to estimate potential changes in flood characteristics. Results show that at the middle reaches of the Brahmaputra, peak discharge increases by a maximum of 9% for land use change scenarios. The same model with bias-corrected climatological data from a regional climate model (RCM) simulation (PRECIS) was used to obtain future changes in flood generation and its propagation through the basin in the projected climatological scenario. Changes in flood characteristics with reference to the baseline period show that the average duration of flood waves will increase from 15.2 days in the baseline period (1961-1990) to 19.3 days in the future (2071-2100). Peak discharge will increase by an average of 21% in the future in the projected climate change scenario. After statistics on changes of flood characteristics in the projected climate change scenario (2071-2100) were obtained, a 2-dimensional hydrodynamic model was used to obtain flood inundation and velocity distribution on the floodplain. Distribution of velocity and inundation depth was spatially analyzed to obtain flood hazard zones in the projected climate change scenario. Results show that spatial variation in flood hazard zones will be significantly altered in the projected climate change scenario compared to land use/land cover changes.


2017 ◽  
Vol 26 (3) ◽  
pp. 253-259 ◽  
Author(s):  
N. Nageswara Reddy ◽  
K. Venkata Reddy ◽  
J. Sri Lakshmi Sesha Vani ◽  
Prasad Daggupati ◽  
Raghavan Srinivasan

Hydrology ◽  
2022 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Mouhamed Idrissou ◽  
Bernd Diekkrüger ◽  
Bernhard Tischbein ◽  
Felix Op de Hipt ◽  
Kristian Näschen ◽  
...  

Water scarcity for smallholder farming in West Africa has led to the shift of cultivation from uplands to inland valleys. This study investigates the impacts of climate and land use/land cover (LULC) change on water resources in an intensively instrumented inland valley catchment in Southwestern Burkina Faso. An ensemble of five regional climate models (RCMs) and two climate scenarios (RCP 4.5 and RCP 8.5) was utilized to drive a physically-based hydrological model WaSiM after calibration and validation. The impact of climate change was quantified by comparing the projected period (2021–2050) and a reference period (1971–2000). The result showed a large uncertainty in the future change of runoff between the RCMs. Three models projected an increase in the total runoff from +12% to +95%, whereas two models predicted a decrease from −44% to −24%. Surface runoff was projected to show the highest relative change compared to the other runoff components. The projected LULC 2019, 2025, and 2030 were estimated based on historical LULC change (1990–2013) using the Land Change Modeler (LCM). A gradual conversion of savanna to cropland was shown, with annual rates rom 1 to 3.3%. WaSiM was used to simulate a gradual increase in runoff with time caused by this land use change. The combined climate and land use change was estimated using LULC-2013 in the reference period and LULC-2030 as future land use. The results suggest that land use change exacerbates the increase in total runoff. The increase in runoff was found to be +158% compared to the reference period but only +52% without land use change impacts. This stresses the fact that land use change impact is not negligible in this area, and climate change impact assessments without land use change analysis might be misleading. The results of this study can be used as input to water management models in order to derive strategies to cope with present and future water scarcities for smallholder farming in the investigated area.


Author(s):  
Klodian Zaimi ◽  
Fatos Hoxhaj ◽  
Sergio Fattorelli ◽  
rancesca Ramazzina

Ulza Dam is one of the oldest hydropower infrastructures in Albania. The water capacity of the reservoir has been reduced because of the accumulation of the sediments coming from Mat River. The bathymetric measurements and river sediment transport are used for quantifying the water storage change up to nowadays. Analyzing the future climate change impact in the sediment transport from the river is very important for understanding the Ulza Dam lifespan. In order to analyze the sediment regime in the future, the climate change projection from the EURO-CORDEX has been downscaled for Mat River catchment and used as input for the HEC-HMS hydrological model considering also the erosion and sediment module. The hydrological model was also calibrated with the MUSLE parameters, and it reproduces the average value of the total sediment transport. The analysis of climate change impact on erosion and sediment transported at the reservoirs was done considering the mean annual load for the different 30-year simulated periods related to values from the historical period 1981-2010. Considering the impacts of climate change, the mean annual sediment siltation could increase for RCP4.5 and RCP8.5 scenarios. Over this hypothesis, the remaining lifespan can be reduced drastically in both scenarios. Different land-use scenarios were analyzed in order to evaluate the impact of erosion and, because the current land use scenario doesn’t produce any impact on the hydrological process, but only effects at a small scale, two hypothetical scenarios were defined at large scale and applied for Mat River catchment. Extensive management of land use and reforestation produce a positive effect on the hydrological process and reducing the erosion rate. The change of land use significantly counteracts the negative effects of climate change by 15% and a 24% reduction in the case of these land-use scenarios.


Sign in / Sign up

Export Citation Format

Share Document