CLASSIFICATION OF INTERNAL WAVE BREAKING OVER A SLOPE WITH THE CHANGE IN THE THICKNESS OF PYCNOCLINE

Author(s):  
Ryo IWATA ◽  
Takahiro SATO ◽  
Keisuke NAKAYAMA
Keyword(s):  
2018 ◽  
Vol 15 (14) ◽  
pp. 4387-4403 ◽  
Author(s):  
Hans van Haren

Abstract. A 400 m long array with 201 high-resolution NIOZ temperature sensors was deployed above a north-east equatorial Pacific hilly abyssal plain for 2.5 months. The sensors sampled at a rate of 1 Hz. The lowest sensor was at 7 m above the bottom (m a.b.). The aim was to study internal waves and turbulent overturning away from large-scale ocean topography. Topography consisted of moderately elevated hills (a few hundred metres), providing a mean bottom slope of one-third of that found at the Mid-Atlantic Ridge (on 2 km horizontal scales). In contrast with observations over large-scale topography like guyots, ridges and continental slopes, the present data showed a well-defined near-homogeneous “bottom boundary layer”. However, its thickness varied strongly with time between < 7 and 100 m a.b. with a mean around 65 m a.b. The average thickness exceeded tidal current bottom-frictional heights so that internal wave breaking dominated over bottom friction. Near-bottom fronts also varied in time (and thus space). Occasional coupling was observed between the interior internal wave breaking and the near-bottom overturning, with varying up- and down- phase propagation. In contrast with currents that were dominated by the semidiurnal tide, 200 m shear was dominant at (sub-)inertial frequencies. The shear was so large that it provided a background of marginal stability for the straining high-frequency internal wave field in the interior. Daily averaged turbulence dissipation rate estimates were between 10−10 and 10−9 m2 s−3, increasing with depth, while eddy diffusivities were of the order of 10−4 m2 s−1. This most intense “near-bottom” internal-wave-induced turbulence will affect the resuspension of sediments.


1984 ◽  
Vol 42 (1) ◽  
pp. 15-27 ◽  
Author(s):  
Ann E. Gargett ◽  
Greg Holloway

2016 ◽  
Vol 121 (8) ◽  
pp. 5436-5451 ◽  
Author(s):  
Maria B. Broadbridge ◽  
Alberto C. Naveira Garabato ◽  
A. J. George Nurser

2017 ◽  
Vol 836 ◽  
pp. 72-116 ◽  
Author(s):  
S. A. Thorpe

The supply of energy to the internal wave field in the ocean is, in total, sufficient to support the mixing required to maintain the stratification of the ocean, but can the required rates of turbulent dissipation in mid-water be sustained by breaking internal waves? It is assumed that turbulence occurs in regions where the field of motion can be represented by an exact solution of the equations that describe waves propagating through a uniformly stratified fluid and becoming unstable. Two instabilities leading to wave breaking are examined, convective instability and shear-induced Kelvin–Helmholtz instability. Models are constrained by data representative of the mid-water ocean. Calculations of turbulent dissipation are first made on the assumption that all the waves representing local breaking have the same steepness, $s$, and frequency, $\unicode[STIX]{x1D70E}$. For some ranges of $s$ and $\unicode[STIX]{x1D70E}$, breaking can support the required transfer of energy to turbulence. For convective instability this proves possible for sufficiently large $s$, typically exceeding 2.0, over a range of $\unicode[STIX]{x1D70E}$, while for shear-induced instability near-inertial waves are required. Relaxation of the constraint that the model waves all have the same $s$ and $\unicode[STIX]{x1D70E}$ requires new assumptions about the nature and consequences of wave breaking. Examples predict an overall dissipation consistent with the observed rates. Further observations are, however, required to test the validity of the assumptions made in the models and, in particular, to determine the nature and frequency of internal wave breaking in the mid-water ocean.


2007 ◽  
Vol 54 ◽  
pp. 376-380
Author(s):  
Keisuke NAKAYAMA ◽  
Keita FURUKAWA ◽  
Takumi MIYAZAWA ◽  
Yosuke YAMASHIKI

Sign in / Sign up

Export Citation Format

Share Document