RATIONALIZATION OF SEWER PIPE SYSTEM ACCOMPANYING INCREASE IN ACCURACY OF QUANTITATIVE CONTROL FACILITY

Author(s):  
Shuhei ODA ◽  
Kohei ODA ◽  
Shinji ARAO
2007 ◽  
Vol 16 (04) ◽  
pp. 611-625 ◽  
Author(s):  
ALIREZA AHRARY ◽  
LI TIAN ◽  
SEI-ICHIRO KAMATA ◽  
MASUMI ISHIKAWA

Sewer environment is composed of cylindrical pipes, in which only a few landmarks such as manholes, inlets and pipe joints are available for localization. This paper presents a method for navigation of an autonomous sewer inspection robot in a sewer pipe system based on detection of landmarks. In this method, location of an autonomous sewer inspection robot in the sewer pipe system is estimated from stereo camera images. The laser scanner data are also used to ensure accurate localization of the landmarks and reduce the error in distance estimation by image processing. The method is implemented and evaluated in a sewer pipe test field using a prototype robot, demonstrating its effectiveness.


Author(s):  
M. B. Sergeev ◽  
V. A. Nenashev ◽  
A. M. Sergeev

Introduction: The problem of noise-free encoding for an open radio channel is of great importance for data transfer. The results presented in this paper are aimed at stimulating scientific interest in new codes and bases derived from quasi-orthogonal matrices, as a basis for the revision of signal processing algorithms.Purpose: Search for new code sequences as combinations of codes formed from the rows of Mersenne and Raghavarao quasi-orthogonal matrices, as well as complex and more efficient Barker — Mersenne — Raghavarao codes.Results: We studied nested code sequences derived from the rows of quasi-orthogonal cyclic matrices of Mersenne, Raghavarao and Hadamard, providing estimates for the characteristics of the autocorrelation function of nested Barker, Mersenne and Raghavarao codes, and their combinations: in particular, the ratio between the main peak and the maximum positive and negative “side lobes”. We have synthesized new codes, including nested ones, formed on the basis of quasi-orthogonal matrices with better characteristics than the known Barker codes and their nested constructions. The results are significant, as this research influences the establishment and development of methods for isolation, detection and processing of useful information. The results of the work have a long aftermath because new original code synthesis methods need to be studied, modified, generalized and expanded for new application fields.Practical relevance: The practical application of the obtained results guarantees an increase in accuracy of location systems, and detection of a useful signal in noisy background. In particular, these results can be used in radar systems with high distance resolution, when detecting physical objects, including hidden ones.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 397-402
Author(s):  
Yasuhiko Wada ◽  
Hiroyuki Miura ◽  
Rituo Tada ◽  
Yasuo Kodaka

We examined the possibility of improved runoff control in a porous asphalt pavement by installing beneath it an infiltration pipe with a numerical simulation model that can simulate rainfall infiltration and runoff at the porous asphalt pavement. From the results of simulations about runoff and infiltration at the porous asphalt pavement, it became clear that putting a pipe under the porous asphalt pavement had considerable effect, especially during the latter part of the rainfall.


Sign in / Sign up

Export Citation Format

Share Document