lake bottom
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 41)

H-INDEX

29
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8053
Author(s):  
Johannes Hoppenbrock ◽  
Matthias Bücker ◽  
Jakob Gallistl ◽  
Adrián Flores Orozco ◽  
Carlos Pita de la Paz ◽  
...  

Lakes are integrators of past climate and ecological change. This information is stored in the sediment record at the lake bottom, and to make it available for paleoclimate research, potential target sites with undisturbed and continuous sediment sequences need to be identified. Different geophysical methods are suitable to identify, explore, and characterize sediment layers prior to sediment core recovery. Due to the high resolution, reflection seismic methods have become standard for this purpose. However, seismic measurements cannot always provide a comprehensive image of lake-bottom sediments, e.g., due to lacking seismic contrasts between geological units or high attenuation of seismic waves. Here, we developed and tested a complementary method based on water-borne electrical-resistivity tomography (ERT) measurements. Our setup consisted of 13 floating electrodes (at 5 m spacing) used to collect ERT data with a dipole–dipole configuration. We used a 1D inversion to adjust a layered-earth model, which facilitates the implementation of constraints on water depth, water resistivity, and sediment resistivity as a priori information. The first two parameters were readily obtained from the echo-sounder and conductivity-probe measurements. The resistivity of sediment samples can also be determined in the laboratory. We applied this approach to process ERT data collected on a lake in southern Mexico. The direct comparison of ERT data with reflection seismic data collected with a sub-bottom profiler (SBP) showed that we can significantly improve the sediment-thickness estimates compared to unconstrained 2D inversions. Down to water depths of 20 m, our sediment thickness estimates were close to the sediment thickness derived from collocated SBP seismograms. Our approach represents an implementation of ERT measurements on lakes and complements the standard lake-bottom exploration by reflection seismic methods.


2021 ◽  
Vol 937 (4) ◽  
pp. 042096
Author(s):  
N I Meshcheriakov ◽  
G V Ilyin ◽  
E G Zhuvikina ◽  
G V Tarasov

Abstract The paper reviews the study results of sedimentation and formation of geochemical characteristics of glacial Lake Bretjørna sediment – as the example of postglacial process in inner areas of Arctic archipelagos. Field research and sampling were carried out in the winter of 2018. The properties of sediments along the profile of the lake were analyzed. The income and accumulation of heavy metals in sediment were assessed. The lithofacies characteristics of the sediments and their spatial distribution were determined. In the paper the main geochemical characteristics of the lake bottom sediments (granulometric composition, organic matter content, as well as the accumulation of Pb, Zn, Cu, Ni, Fe, Mn, Hg) are considered. The correlation between the lithological composition of sediments and their micro-component content are shown. Correlation between elements and terrigenous sediments income from Northern Scandinavia and the Kola Peninsula accumulated by the glacier and snow cover of the catchment is obtained. Three associations of trace elements in the group of studied elements are distinguished.


Author(s):  
A. V. Belyashov ◽  
Ts. A. Tubanov

Whereas the defined velocity model plays a key role in the process of seismic events localization, so selection of the model as much as possible corresponding to the real velocity conditions of the investigated area becomes a crucial task. Basing on the analyses of published results of the Lake Baikal area seismic study a layered P-waves models for two situations defined: For the high velocity consolidated rock on the lake banks and low velocity sediments up to 10 km thick under the lake bottom.


2021 ◽  
Author(s):  
Evgeny A. Zarov ◽  
Elena D. Lapshina ◽  
Iris Kuhlmann ◽  
Ernst-Detlef Schulze

Abstract. Dissolved organic carbon is an additional path of carbon cycle but there is a lack of information about its distribution in peatland and rates of downward movement. We dated seven peat cores (separately the dissolved (DOC) and particulate (POC) organic carbon) from Mukhrino peatland (typical zonal oligotrophic bog) in western Siberia to assess the date distribution between those two peat fractions. Our results revealed that the DOC is younger than POC for the surface peatland layers (0–150 cm) and older for the deeper layers. The date differences increases with depth and reaches 2000–3000 years at the bottom layer (430–530 cm). In our hypothesis this date discrepancy caused by more young DOC moving to the deeper and older peat layers. The estimated average value of DOC downward movement was 0.047 ± 0.019 cm yr−1. Th oldest dates found at the lake bottom and ancient riverbed were 10 053 and 10 989 cal yr BP correspondingly. For the whole period of peatland functioning the average peat accumulation rate was estimated as 0.067 ± 0.018 cm yr−1 (0.013–0.332 cm yr−1), the carbon accumulation rate was estimated as 38.56 ± 12.21 g С m−2 yr−1 (28.46–57.91 g С m−2 yr−1).


Author(s):  
Aldo Marchetto ◽  
Angela Boggero ◽  
Diego Fontaneto ◽  
Andrea Lami ◽  
André F. Lotter ◽  
...  

We publish a data set of environmental and biological data collected in 2000 during the ice-free period in high mountain lakes located above the local timberline in the Alps, in Italy, Switzerland and Austria. Environmental data include coordinates, geographical attributes and detailed information on vegetation, bedrock and land use in lake catchments. Chemical analyses of a sample for each lake collected at the lake surface in Summer 2000 are also reported. Biological data include phytoplankton (floating algae and cyanobacteria), zooplankton (floating animals), macroinvertebrates (aquatic organisms visible to the naked eye living in contact with sediments on lake bottom), benthic diatoms. Diatoms, cladocera and chironomids remains and algal and bacterial pigments were also analysed in lake sediments.


2021 ◽  
Vol 9 (8) ◽  
pp. 1718
Author(s):  
Haolun Tian ◽  
Junjie Jin ◽  
Bojian Chen ◽  
Daniel D. Lefebvre ◽  
Stephen C. Lougheed ◽  
...  

Cyanobacteria in the genus Microcystis are dominant components of many harmful algal blooms worldwide. Their pelagic–benthic life cycle helps them survive periods of adverse conditions and contributes greatly to their ecological success. Many studies on Microcystis overwintering have focused on benthic colonies and suggest that sediment serves as the major inoculum for subsequent summer blooms. However, the contemporaneous overwintering pelagic population may be important as well but is understudied. In this study, we investigated near-surface and near-bottom pelagic population dynamics of both microcystin-producing Microcystis and total Microcystis over six weeks in winter at Dog Lake (South Frontenac, ON, Canada). We quantified relative Microcystis concentrations using real-time PCR. Our results showed that the spatiotemporal distribution of overwintering pelagic Microcystis was depth dependent. The abundance of near-bottom pelagic Microcystis declined with increased depth with no influence of depth on near-surface Microcystis abundance. In the shallow region of the lake (<10 m), most pelagic Microcystis was found near the lake bottom (>90%). However, the proportion of near-surface Microcystis rose sharply to over 60% as the depth increased to approximately 18 m. The depth-dependent distribution pattern was found to be similar in both microcystin-producing Microcystis and total Microcystis. Our results suggest the top of the water column may be a more significant contributor of Microcystis recruitment inoculum than previously thought and merits more attention in early CHAB characterization and remediation.


2021 ◽  
Vol 15 (7) ◽  
pp. 3279-3291
Author(s):  
Ross Maguire ◽  
Nicholas Schmerr ◽  
Erin Pettit ◽  
Kiya Riverman ◽  
Christyna Gardner ◽  
...  

Abstract. In this study, we report the results of an active-source seismology and ground-penetrating radar survey performed in northwestern Greenland at a site where the presence of a subglacial lake beneath the accumulation area has previously been proposed. Both seismic and radar results show a flat reflector approximately 830–845 m below the surface, with a seismic reflection coefficient of −0.43 ± 0.17, which is consistent with the acoustic impedance contrast between a layer of water and glacial ice. Additionally, in the seismic data we observe an intermittent lake bottom reflection arriving between 14–20 ms after the lake top reflection, corresponding to a lake depth of approximately 10–15 m. A strong coda following the lake top and lake bottom reflections is consistent with a package of lake bottom sediments although its thickness and material properties are uncertain. Finally, we use these results to conduct a first-order assessment of the lake origins using a one-dimensional thermal model and hydropotential modeling based on published surface and bed topography. Using these analyses, we narrow the lake origin hypotheses to either anomalously high geothermal flux or hypersalinity due to local ancient evaporite. Because the origins are still unclear, this site provides an intriguing opportunity for the first in situ sampling of a subglacial lake in Greenland, which could better constrain mechanisms of subglacial lake formation, evolution, and relative importance to glacial hydrology.


Author(s):  
Sarianna Salminen ◽  
Mira Tammelin ◽  
Tom Jilbert ◽  
Yu Fukumoto ◽  
Saija Saarni

AbstractThe influence of lake restoration efforts on lake bottom-water conditions and varve preservation is not well known. We studied varved sediments deposited during the last 80 years along a water-depth transect in the Enonsaari Deep, a deep-water area of the southernmost Enonselkä Basin, Lake Vesijärvi, southern Finland. For the last few decades, the Enonselkä Basin has been subject to ongoing restoration efforts. Varve, elemental, and diatom analyses were undertaken to explore how these actions and other human activities affected varve preservation in the Enonsaari Deep. In contrast to most varved Finnish lakes, whose water columns have a natural tendency to stratify, and possess varve records that span thousands of years, varve formation and preservation in Lake Vesijärvi was triggered by relatively recent anthropogenic stressors. The multi-core varve analysis revealed that sediment in the Enonsaari Deep was initially non-varved, but became fully varved in the late 1930s, a time of increasing anthropogenic influence on the lake. The largest spatial extent of varves occurred in the 1970s, which was followed by a period of less distinguishable varves, which coincided with diversion of sewage from the lake. Varve preservation weakened during subsequent decades and was terminated completely by lake aeration in the 2010s. Despite improvements in water quality, hypolimnetic oxygen depletion and varve preservation persisted beyond the reduction in sewage loading, initial aeration, and biomanipulation. These restoration efforts, however, along with other human actions such as harbor construction and dredging, did influence varve characteristics. Varves were also influenced by diatom responses to anthropogenic forcing, because diatoms form a substantial part of the varve structure. Of all the restoration efforts, a second episode of aeration seems to have had the single most dramatic impact on profundal conditions in the basin, resulting in replacement of a sediment accumulation zone by a transport or erosional zone in the Enonsaari Deep. We conclude that human activities in a lake and its catchment can alter lake hypolimnetic conditions, leading to shifts in lake bottom dynamics and changes in varve preservation.


Sign in / Sign up

Export Citation Format

Share Document