STUDY ON LIGHTWEIGHT AND HIGH STRENGTH PRESTRESSED CONCRETE SLAB BY USING LIGHTWEIGHT CONCRETE MIXED WITH SHORT FIBERS

Author(s):  
Yuichi KITANO ◽  
Hajime ITO ◽  
Satoshi SUZUKI
2012 ◽  
Vol 450-451 ◽  
pp. 338-342
Author(s):  
Ming Jie Mao ◽  
Qiu Ning Yang

A lightweight aggregate with low permeability was employed in the concrete slab; and the strength of the slab is mainly discussed. The purpose of present study is to evaluate experimentally the punching shear strength of lightweight concrete slab, and to propose the punching shear strength equation for the slab with lightweight aggregate concrete. The applicability of the proposed equation to the both reinforced concrete and pre-stressed concrete slabs with lightweight aggregate concrete.


2010 ◽  
Vol 37 (4) ◽  
pp. 511-521 ◽  
Author(s):  
H. Almansour ◽  
Z. Lounis

The construction of new bridges and the maintenance and renewal of aging highway bridge network using ultra high performance concrete can lead to the construction of long life bridges that will require minimum maintenance resulting in low life cycle costs. Ultra high performance concrete (UHPC) is a newly developed concrete material that provides very high strength and very low permeability to aggressive agents such as chlorides from de-icing salts or seawater. Ultra high performance concrete could enable major improvements over conventional high performance concrete (HPC) bridges in terms of structural efficiency, durability, and cost-effectiveness over the long term. A simplified design approach of concrete slab on UHPC girders bridge using the Canadian Highway Bridge Design code and the current recommendations for UHPC design is proposed. An illustrative example demonstrates that the use of UHPC in precast–prestressed concrete girders yields a more efficient design of the superstructure where considerable reduction in the number of girders and girder size when compared to conventional HPC girders bridge with the same span length. Hence, UHPC results in a significant reduction in concrete volume and then weight of the superstructure, which in turn leads to significant reduction in the dead load on the substructure, especially for the case of aging bridges, thus improving their performance.


2010 ◽  
Vol 133-134 ◽  
pp. 1171-1176
Author(s):  
Hubertus Kieslich ◽  
Klaus Holschemacher

Currently Timber-Concrete Composite (TCC) Constructions are often applied for strengthening existing timber beam slabs. The load bearing capacity of the composite construction is primarily affected by the material properties of the timber beam and the concrete slab. But the type of bond between both parts is also of high importance. The concrete slab has to perform several tasks, not only in load carrying direction of the ceiling but also perpendicular to the direction of span or for stiffening the whole building. These tasks will be pointed out in this paper. Furthermore the working process (easy workable mixture and exchange of conventional reinforcement) and the dead load of the construction are of particular interest in the field of redevelopment. Several innovative concretes have been verified for the use in TCC constructions. Regarding their fresh and hardened concrete properties, they all can be described as High Performance Concretes (HPC). In this paper Self Compacting Concrete (SCC), Fiber Reinforced Concrete (FRC), Structural Lightweight Concrete (SLWC), High Strength Concrete (HSC) or combinations of them will be focused. Especially the advantages but also the disadvantages of innovative concretes for the use in TCC will be presented as well as the results of some experimental investigations.


2013 ◽  
Vol 12 (1) ◽  
pp. 187-194
Author(s):  
Tadeusz Urban ◽  
Michał Gołdyn ◽  
Łukasz Krawczyk

This paper presents the problem of load carrying capacity of the columns made of high-strength reinforced concrete which are separated by slab made of lightweight concrete. The experimental investigations of three models representing the internal connection between column and flat slab made of lightweight concrete of the strength tree times less than concrete strength of column are presented. The effort degree on the punching shear capacity stands for the variable parameter in the presented study. The performed study shows that there is no effect of this parameter on the effective concrete strength of the column.


Author(s):  
Ariful Hasnat ◽  
Nader Ghafoori

AbstractThis study aimed to determine the abrasion resistance of ultra-high-performance concretes (UHPCs) for railway sleepers. Test samples were made with different cementitious material combinations and varying steel fiber contents and shapes, using conventional fine aggregate. A total of 25 UHPCs and two high-strength concretes (HSCs) were selected to evaluate their depth of wear and bulk properties. The results of the coefficient of variation (CV), relative gain in abrasion, and abrasion index of the studied UHPCs were also obtained and discussed. Furthermore, a comparison was made on the resistance to wear of the selected UHPCs with those of the HSCs typically used for prestressed concrete sleepers. The outcomes of this study revealed that UHPCs displayed excellent resistance against abrasion, well above that of HSCs. Amongst the utilized cementitious material combinations, UHPCs made with silica fume as a partial replacement of cement performed best against abrasion, whereas mixtures containing fly ash showed the highest depth of wear. The addition of steel fibers had a more positive influence on the abrasion resistance than it did on compressive strength of the studied UHPCs.


2021 ◽  
Vol 281 ◽  
pp. 122410
Author(s):  
Huiyuan Liu ◽  
Mohamed Elchalakani ◽  
Ali Karrech ◽  
Sherif Yehia ◽  
Bo Yang

Sign in / Sign up

Export Citation Format

Share Document