scholarly journals Cyclic behavior of high strength lightweight concrete slab-edge column connections with and without openings

2022 ◽  
Vol 16 ◽  
pp. e00832
Author(s):  
Mahmoud A. El-Mandouh ◽  
Khaled Abu el-hassan
2010 ◽  
Vol 133-134 ◽  
pp. 1171-1176
Author(s):  
Hubertus Kieslich ◽  
Klaus Holschemacher

Currently Timber-Concrete Composite (TCC) Constructions are often applied for strengthening existing timber beam slabs. The load bearing capacity of the composite construction is primarily affected by the material properties of the timber beam and the concrete slab. But the type of bond between both parts is also of high importance. The concrete slab has to perform several tasks, not only in load carrying direction of the ceiling but also perpendicular to the direction of span or for stiffening the whole building. These tasks will be pointed out in this paper. Furthermore the working process (easy workable mixture and exchange of conventional reinforcement) and the dead load of the construction are of particular interest in the field of redevelopment. Several innovative concretes have been verified for the use in TCC constructions. Regarding their fresh and hardened concrete properties, they all can be described as High Performance Concretes (HPC). In this paper Self Compacting Concrete (SCC), Fiber Reinforced Concrete (FRC), Structural Lightweight Concrete (SLWC), High Strength Concrete (HSC) or combinations of them will be focused. Especially the advantages but also the disadvantages of innovative concretes for the use in TCC will be presented as well as the results of some experimental investigations.


2013 ◽  
Vol 12 (1) ◽  
pp. 187-194
Author(s):  
Tadeusz Urban ◽  
Michał Gołdyn ◽  
Łukasz Krawczyk

This paper presents the problem of load carrying capacity of the columns made of high-strength reinforced concrete which are separated by slab made of lightweight concrete. The experimental investigations of three models representing the internal connection between column and flat slab made of lightweight concrete of the strength tree times less than concrete strength of column are presented. The effort degree on the punching shear capacity stands for the variable parameter in the presented study. The performed study shows that there is no effect of this parameter on the effective concrete strength of the column.


2021 ◽  
Vol 281 ◽  
pp. 122410
Author(s):  
Huiyuan Liu ◽  
Mohamed Elchalakani ◽  
Ali Karrech ◽  
Sherif Yehia ◽  
Bo Yang

Structures ◽  
2022 ◽  
Vol 36 ◽  
pp. 65-97
Author(s):  
Inas Mahmood Ahmed ◽  
Konstantinos Daniel Tsavdaridis

Author(s):  
Vera V. Galishnikova ◽  
Alireza Heidari ◽  
Paschal C. Chiadighikaobi ◽  
Adegoke Adedapo Muritala ◽  
Dafe Aniekan Emiri

Relevance. The load on a reinforced concrete slab with high strength lightweight aggregate concrete leads to increased brittleness and contributes to large deflection or flexure of slabs. The addition of fibers to the concrete mix can improve its mechanical properties including flexure, deformation, toughness, ductility, and cracks. The aims of this work are to investigate the flexure and ductility of lightweight expanded clay concrete slabs reinforced with basalt fiber polymers, and to check the effects of basalt fiber mesh on the ductility and flexure. Methods. The ductility and flexural/deflection tests were done on nine engineered cementitious composite (expanded clay concrete) slabs with dimensions length 1500 mm, width 500 mm, thickness 65 mm. These nine slabs are divided in three reinforcement methods types: three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm (first slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed chopped basalt fiber plus basalt fiber polymer (mesh) of cells 2525 mm (second slab type); three lightweight expanded clay concrete slab reinforced with basalt rebars 10 mm plus dispersed basalt fiber of length 20 mm, diameter 15 m (third slab type). The results obtained showed physical deflection of the three types of slab with cracks. The maximum flexural load for first slab type is 16.2 KN with 8,075 mm deflection, second slab type is 24.7 KN with 17,26 mm deflection and third slab type 3 is 32 KN with 15,29 mm deflection. The ductility of the concrete slab improved with the addition of dispersed chopped basalt fiber and basalt mesh.


2012 ◽  
Vol 610-613 ◽  
pp. 573-576
Author(s):  
Zheng Jun Wang ◽  
Jia Bin Liang

This paper discusses the development of water-reducing agent and the present situation of the application of high performance concrete. The traditional concrete will be substituted by high performance concrete, green concrete. In the course of appearance of high performance and green, concrete admixtures plays an extremely important role. Concrete water-reducing agent is admixture of the main part. In the case of keeping liquidity, it can make water consumption reduce, so the concrete strength and durability can be improved. It is applicable to all kinds of industrial and civil construction engineering, and it can be applied to different strength grade of concrete. It has important significance for mass concrete engineering, marine building facilities, and component and product of high strength lightweight concrete.


2018 ◽  
Vol 926 ◽  
pp. 140-145 ◽  
Author(s):  
Małgorzata Mieszczak ◽  
Lucyna Domagała

The paper presents the results of tests conducted on two lightweight aggregate concretes made of new national Certyd artificial aggregate. This research is intended to first application of lightweight concrete to construct large-span post-tensioned slab. In addition to mechanical properties development, shrinkage and creep during 3 months of loading were tested. The obtained results are compared with theoretical results predicted by standard. Conducted tests indicated, that measured values of shrinkage and creep are significantly lower than predicted ones. This is promise for application of tested concrete in construction of post-tensioned slabs.


2019 ◽  
Vol 945 ◽  
pp. 969-974
Author(s):  
V. Kruglov ◽  
V. Iurchenko

The paper considers the modification of the generally accepted formulation of the finite elements method by applying in the calculation I.Mileykovski’s refined technical theory of shells that takes into account the deformations of the transverse shear along the thickness of the model. When applying this solution path, it is possible to calculate thick and thin shells (plates) with equal efficiency, taking into account the complex strained state of an anisotropic material. It illustrates the inclusion in the computational algorithm of variable parameters of the elasticity of concrete, allowing more accurate evaluation of the stress-strain state in the finite element under complex (combined) loads. The presence of reinforcement in the material is modeled by dividing the structure into layers and sequentially reduction the elastic characteristics of the material based on the volume ratio of the components. The advantage of the algorithm is the ease of its integration with the conventional finite elements method. All transformations in this case consist in the modification of expressions for determining the elastic characteristics of the construction, calculating the gradient and stiffness matrices, while the sequence of further calculations does not change. This enables to use the proposed algorithm, including as a plug-in software module, expanding the capabilities of existing computing programs. The article demonstrates the application of the method in modeling a reinforced concrete slab made with the use of multi-component high-strength concrete of a heavy class having a prismatic strength under uniaxial compression of more than 110 MPa.


Sign in / Sign up

Export Citation Format

Share Document