scholarly journals SEDIMENT TRANSPORT MODEL CONSIDERING UNRESOLVED SCALES OF TURBULENCE IN LARGE-EDDY SIMULATION AND ITS APPLICATION TO LOCAL SCOURING DUE TO RUN-UP TSUNAMI

2011 ◽  
Vol 67 (2) ◽  
pp. I_1183-I_1188
Author(s):  
Tomoaki NAKAMURA ◽  
Norimi MIZUTANI
2014 ◽  
Vol 1 (1) ◽  
pp. 755-801
Author(s):  
J. C. Harris ◽  
S. T. Grilli

Abstract. Wave-induced Boundary Layer (BL) flows over sandy rippled bottoms are studied using a numerical model that applies a one-way coupling of a "far-field" inviscid flow model to a "near-field" Large Eddy Simulation (LES) Navier–Stokes (NS) model. The incident inviscid velocity and pressure fields force the LES, in which near-field, wave-induced, turbulent bottom BL flows are simulated. A sediment suspension and transport model is embedded within the coupled flow model. The numerical implementation of the various models has been reported elsewhere, where we showed that the LES was able to accurately simulate both mean flow and turbulent statistics for oscillatory BL flows over a flat, rough bed. Here, we show that the model accurately predicts the mean velocity fields and suspended sediment concentration for oscillatory flows over full-scale vortex ripples. Tests show that surface roughness has a significant effect on the results. Beyond increasing our insight into wave-induced oscillatory bottom BL physics, models of sediment transport as sophisticated as the present coupled model have the potential to make quantitative predictions of sediment transport and erosion/accretion around partly buried objects in the bottom, which is important for a vast array of bottom deployed instrumentation and other practical ocean engineering problems.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Ehsan Shams ◽  
Sourabh V. Apte

Large-eddy simulation of flow over an open cavity corresponding to the experimental setup of Liu and Katz (2008, “Cavitation Phenomena Occurring Due to Interaction of Shear Layer Vortices With the Trailing Corner of a Two-Dimensional Open Cavity,” Phys. Fluids, 20(4), p. 041702) is performed. The filtered, incompressible Navier–Stokes equations are solved using a co-located grid finite-volume solver with the dynamic Smagorinsky model for a subgrid-scale closure. The computational grid consists of around 7×106 grid points with 3×106 points clustered around the shear layer, and the boundary layer over the leading edge is resolved. The only input from the experimental data is the mean velocity profile at the inlet condition. The mean flow is superimposed with turbulent velocity fluctuations generated by solving a forced periodic duct flow at a freestream Reynolds number. The flow statistics, including mean and rms velocity fields and pressure coefficients, are compared with the experimental data to show reasonable agreement. The dynamic interactions between traveling vortices in the shear layer and the trailing edge affect the value and location of the pressure minima. Cavitation inception is investigated using two approaches: (i) a discrete bubble model wherein the bubble dynamics is computed by solving the Rayleigh–Plesset and the bubble motion equations using an adaptive time-stepping procedure and (ii) a scalar transport model for the liquid volume fraction with source and sink terms for phase change. Large-eddy simulation, together with the cavitation models, predicts that inception occurs near the trailing edge similar to that observed in the experiments. The bubble transport model captures the subgrid dynamics of the vapor better, whereas the scalar model captures the large-scale features more accurately. A hybrid approach combining the bubble model with the scalar transport is needed to capture the broad range of scales observed in cavitation.


Sign in / Sign up

Export Citation Format

Share Document