scholarly journals LONG TERM STRENGTH CHARACTERISTIC OF CEMENT-TREATED AND HIGH-PRESSURE-DEHYDRATED SOIL BLOCK

Author(s):  
Kazutaka UENO ◽  
Kiyonobu KASAMA ◽  
Yasuyuki NAKAGAWA ◽  
Yasuhiro SEGA ◽  
Masaharu MINAMI ◽  
...  
1979 ◽  
Vol 14 (6) ◽  
pp. 598-601
Author(s):  
T. D. Voznyi ◽  
Yu. I. Zvezdin ◽  
I. A. Povyshev ◽  
V. V. Popovich
Keyword(s):  

2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jinbo Jia ◽  
Yansen Wang ◽  
Yangguang Leng

Artificial ground freezing has been widely applied in the construction of vertical shafts in deep and thick alluvia. As an important factor, the in situ creep behavior of deep, frozen soil affects the mechanical properties of frozen walls and the safety and stability of shaft linings. Acquiring creep characteristics and deep soil parameters by methods that ignore the engineering and geological situations is currently inadvisable. A series of triaxial unloading tests were conducted with frozen clay subjected to long-term high-pressure K0 consolidation before freezing to research the unloading creep characteristics, creep strength, and other parameters of the clay, and the results indicated the following: (1) The creep behaviors of frozen clay are affected by the consolidation time and consolidation stress. Long-term high-pressure K0 consolidation reduces the creep strain and creep rate of frozen clay. (2) The decrease in the ice and the unfrozen water contents of frozen clay caused by the prolongation of consolidation time result in an increase in the long-term strength and instantaneous strength. Consolidation time has an obvious effect on long-term strength and weakens the creep property of frozen clay. Consolidation stress significantly affects the instantaneous strength. (3) The deformation resistance capability of frozen clay is enhanced by compaction; thus, E1, η1, and η2 increase with prolonged consolidation, and the nonlinearity of the accelerated creep increases.


Author(s):  
Hong-Ming Lin ◽  
C. H. Liu ◽  
R. F. Lee

Polyetheretherketone (PEEK) is a crystallizable thermoplastic used as composite matrix materials in application which requires high yield stress, high toughness, long term high temperature service, and resistance to solvent and radiation. There have been several reports on the crystallization behavior of neat PEEK and of CF/PEEK composite. Other reports discussed the effects of crystallization on the mechanical properties of PEEK and CF/PEEK composites. However, these reports were all concerned with the crystallization or melting processes at or close to atmospheric pressure. Thus, the effects of high pressure on the crystallization of CF/PEEK will be examined in this study.The continuous carbon fiber reinforced PEEK (CF/PEEK) laminate composite with 68 wt.% of fibers was obtained from Imperial Chemical Industry (ICI). For the high pressure experiments, HIP was used to keep these samples under 1000, 1500 or 2000 atm. Then the samples were slowly cooled from 420 °C to 60 °C in the cooling rate about 1 - 2 degree per minute to induce high pressure crystallization. After the high pressure treatment, the samples were scanned in regular DSC to study the crystallinity and the melting temperature. Following the regular polishing, etching, and gold coating of the sample surface, the scanning electron microscope (SEM) was used to image the microstructure of the crystals. Also the samples about 25mmx5mmx3mm were prepared for the 3-point bending tests.


2009 ◽  
Vol 58 (6) ◽  
pp. 525-532 ◽  
Author(s):  
Yoshitaka NARA ◽  
Masafumi TAKADA ◽  
Daisuke MORI ◽  
Hitoshi OWADA ◽  
Tetsuro YONEDA ◽  
...  

2021 ◽  
Vol 144 ◽  
pp. 106424 ◽  
Author(s):  
Xueyu Pang ◽  
Jiankun Qin ◽  
Lijun Sun ◽  
Ge Zhang ◽  
Honglu Wang

Sign in / Sign up

Export Citation Format

Share Document