scholarly journals A Numerical Study on Long-Wave Generation due to Air-Pressure Change

Author(s):  
Taro KAKINUMA ◽  
Taisuke INOUE ◽  
Souichiro HIDAKA ◽  
Toshiyuki ASANO ◽  
Kousuke FUKITA
2013 ◽  
Vol 333-335 ◽  
pp. 157-160
Author(s):  
Fang Cheng Lü ◽  
Qing Zhong Geng ◽  
Yun Peng Liu

Altitude rise result in air pressure reduces. Mason-Schamp ionic mobility equation shows that air pressure change can lead to the ionic mobility change. So a set of simple and economical ionic mobility measurement device system was designed which can simulate different altitudes. The device can measure ionic mobility of single gas or mixed gases at different altitudes. It includes that drift tube, ion source, ion gate, ion current detection system, migration gas preparation system, pressure regulating system and shield iron boxes.


Author(s):  
Lei Wu ◽  
Haijun Jia ◽  
Yang Liu

The integrated gas-steam pressurizer stabilizes the pressure by compressing the gas and steam mixture. It has attracted much attention because of its simple structure, eliminating heating and spraying of equipment, and preventing the liquid boiling. The NHR series developed by Institute of Nuclear and New Energy Technology in Tsinghua University uses the integrated gas-steam pressurizer. The major loop thermal parameters in NHR series increased progressively, which made it suitable for heating, industrial steam supply and seawater desalinization. In order to ensure the safety of the NHR series major loop system and guarantee the natural circulation capability of the system under high temperature and pressure, the researches on the gas-steam transient characteristics of the integrated gas-steam pressurizer is needed. This paper is mainly about study on transient characteristics of the gas-steam typed pressurizer using the Relap5 code. The classic experiment on the pressure behavior of gas-steam pressurizer during the in-surge performed at MIT is considered as reference objects, and the analysis model is established by using Relap5 code. By comparing the computing results with the MIT experiment data about pressure-time, the applicability of Relap5 code for forecasting the transient behavior of the gas-steam (nitrogen) pressurizer has been verified. The results show that Relap5 code can effectively track the transient behavior of the pressure in the gas-steam pressurizer. In addition, the transient characteristics of the integrated gas-steam pressurizer in the NHR series have been studied. It is founded that the pressure and the liquid temperature adjoining to the pressurizer lag behind the power change in natural circulation loop with integrated gas-steam pressurizer, and the liquid temperature adjoining to the pressurizer and the liquid volume under the pressurizer are the main factors determining the pressure change.


2017 ◽  
Vol 121 ◽  
pp. 158-166 ◽  
Author(s):  
Jun Tang ◽  
Yongming Shen ◽  
Derek M. Causon ◽  
Ling Qian ◽  
Clive G. Mingham

2016 ◽  
Vol 279 ◽  
pp. 187-197 ◽  
Author(s):  
V.V. Garayshin ◽  
M.W. Harris ◽  
D.J. Nicolsky ◽  
E.N. Pelinovsky ◽  
A.V. Rybkin
Keyword(s):  

2012 ◽  
Vol 1 (33) ◽  
pp. 38
Author(s):  
Andrea Ruju ◽  
Pablo Higuera ◽  
Javier L. Lara ◽  
Inigo J. Losada ◽  
Giovanni Coco

This work presents the numerical study of rip current circulation on a barred beach. The numerical simulations have been carried out with the IH-FOAM model which is based on the three dimensional Reynolds Averaged Navier-Stokes equations. The new boundary conditions implemented in IH-FOAM have been used, including three dimensional wave generation as well as active wave absorption at the boundary. Applying the specific wave generation boundary conditions, the model is validated to simulate rip circulation on a barred beach. Moreover, this study addresses the identification of the forcing mechanisms and the three dimensional structure of the mean flow.


2018 ◽  
Vol 123 (12) ◽  
pp. 8921-8940 ◽  
Author(s):  
Enrique M. Padilla ◽  
Jose M. Alsina

2021 ◽  
Author(s):  
Kuan-Fu Feng ◽  
Hsin-Hua Huang ◽  
Ya-Ju Hsu ◽  
Yih-Min Wu

<p>Ambient noise interferometry is a promising technique for studying crustal behaviors, providing continuous measurements of seismic velocity changes (dv/v) in relation to physical processes in the crust over time. In addition to the tectonic-driven dv/v changes, dv/v is also known to be affected by environmental factors through rainfall-induced pore-pressure changes, air pressure loading changes, thermoelastic effects, and so forth. In this study, benefiting from the long-term continuous data of Broadband Array in Taiwan for Seismology (BATS) that has been operated since 1994, we analyze continuous seismic data from 1998 to 2019 by applying single-station cross-component (SC) technique to investigate the temporal variations of crust on seismic velocity. We process the continuous waveforms of BATS stations, construct the empirical Green’s functions, and compute daily seismic velocity changes by the stretching technique in a frequency band of 0.1 to 0.9 Hz. We observe co-seismic velocity drops associated with the inland moderate earthquakes. Furthermore, clear seasonal cycles, with a period of near one-year, are also revealed at most stations, but with different characteristics. Systematic spectral and time-series analyses with the weather data are conducted and show that the rainfall-induced pore-pressure change is likely the main cause to the seasonal variations with high correlations. The strong site-dependency of these seasonal variations also precludes air pressure and temperature which varies smoothly in space from being dominant sources and suggests spatially-varying complex hydro-mechanical interaction across the orogenic belt in Taiwan.</p>


Sign in / Sign up

Export Citation Format

Share Document