STUDY ON THE INFLUENCE OF STRUCTURES ON THE SEDIMENT TRANSPORT DUE TO THE TSUNAMI RUN-UP TO RIVER

Author(s):  
Takanobu KAMATAKI ◽  
Syunya KODACHI ◽  
Noritoshi SAITO ◽  
Kazuya WATANABE
2021 ◽  
Vol 16 (7) ◽  
pp. 1015-1029
Author(s):  
Ako Yamamoto ◽  
Yuki Kajikawa ◽  
Kei Yamashita ◽  
Ryota Masaya ◽  
Ryo Watanabe ◽  
...  

Tsunami sediments provide direct evidence of tsunami arrival histories for tsunami risk assessments. Therefore, it is important to understand the formation process of tsunami sediment for tsunami risk assessment. Numerical simulations can be used to better understand the formation process. However, as the formation of tsunami sediments is affected by various conditions, such as the tsunami hydraulic conditions, topographic conditions, and sediment conditions, many problems remain in such simulations when attempting to accurately reproduce the tsunami sediment formation process. To solve these problems, various numerical models and methods have been proposed, but there have been few comparative studies among such models. In this study, inter-model comparisons of tsunami sediment transport models were performed to improve the reproducibility of tsunami sediment features in models. To verify the reproducibility of the simulations, the simulation results were compared with the results of sediment transport hydraulic experiments using a tsunami run-up to land. Two types of experiments were conducted: a sloping plane with and without coverage by silica sand (fixed and movable beds, respectively). The simulation results confirm that there are conditions and parameters affecting not only the amount of sediment transport, but also the distribution. In particular, the treatment of the sediment coverage ratio in a calculation grid, roughness coefficient, and bedload transport rate formula on the fixed bed within the sediment transport model are considered important.


2021 ◽  
Vol 13 (7) ◽  
pp. 1399
Author(s):  
Quang Nguyen Hao ◽  
Satoshi Takewaka

In this study, we analyze the influence of the Great East Japan Earthquake, which occurred on 11 March 2011, on the shoreline of the northern Ibaraki Coast. After the earthquake, the area experienced subsidence of approximately 0.4 m. Shoreline changes at eight sandy beaches along the coast are estimated using various satellite images, including the ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), ALOS AVNIR-2 (Advanced Land Observing Satellite, Advanced Visible and Near-infrared Radiometer type 2), and Sentinel-2 (a multispectral sensor). Before the earthquake (for the period March 2001–January 2011), even though fluctuations in the shoreline position were observed, shorelines were quite stable, with the averaged change rates in the range of ±1.5 m/year. The shoreline suddenly retreated due to the earthquake by 20–40 m. Generally, the amount of retreat shows a strong correlation with the amount of land subsidence caused by the earthquake, and a moderate correlation with tsunami run-up height. The ground started to uplift gradually after the sudden subsidence, and shoreline positions advanced accordingly. The recovery speed of the beaches varied from +2.6 m/year to +6.6 m/year, depending on the beach conditions.


Author(s):  
Juh-Whan Lee ◽  
Jennifer L. Irish ◽  
Robert Weiss

Since near-field-generated tsunamis can arrive within a few minutes to coastal communities and cause immense damage to life and property, tsunami forecasting systems should provide not only accurate but also rapid tsunami run-up estimates. For this reason, most of the tsunami forecasting systems rely on pre-computed databases, which can forecast tsunamis rapidly by selecting the most closely matched scenario from the databases. However, earthquakes not included in the database can occur, and the resulting error in the tsunami forecast may be large for these earthquakes. In this study, we present a new method that can forecast near-field tsunami run-up estimates for any combination of earthquake fault parameters on a real topography in near real-time, hereafter called the Tsunami Run-up Response Function (TRRF).Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/tw1D29dDxmY


2015 ◽  
Vol 124 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Nobuhisa MATSUTA ◽  
Yasuhiro SUZUKI ◽  
Nobuhiko SUGITO ◽  
Takashi NAKATA ◽  
Mitsuhisa WATANABE

Author(s):  
Kohei Murotani ◽  
Seiichi Koshizuka ◽  
Eiichi Nagai ◽  
Toshimitsu Fujisawa ◽  
Akira Anju ◽  
...  
Keyword(s):  
Run Up ◽  

2019 ◽  
Vol 13 (05n06) ◽  
pp. 1941001
Author(s):  
Su Yean Teh ◽  
Hock Lye Koh ◽  
Yong Hui Lim

Many beaches in Penang island were severely inundated by the 26 December 2004 Indian Ocean mega tsunami with 57 deaths recorded. It is anticipated that the next big tsunami will cause even more damages to beaches in Penang. Hence, developing community resilience against the risks of the next tsunami is essential. Resilience entails many interlinked components, beginning with a good understanding of the inundation scenarios critical to community evacuation and resilience preparation. Inundation scenarios are developed from tsunami simulations involving all three phases of tsunami generation, propagation and run-up. Accurate and high-resolution bathymetric–topographic maps are essential for simulations of tsunami wave inundation along beaches. Bathymetric maps contain information on the depths of landforms below sea level while topographic maps reveal the elevation of landforms above sea level. Bathymetric and topographic datasets for Malaysia are, however, currently not integrated and are available separately and in different formats, not suitable for inundation simulations. Bathymetric data are controlled by the National Hydrographic Centre (NHC) of the Royal Malaysian Navy while topographic data are serviced by the Department of Survey and Mapping Malaysia (JUPEM). It is highly desirable to have seamless integration of high-resolution bathymetric and topographic data for tsunami simulations and for other scientific studies. In this paper, we develop a robust method for integrating the NHC bathymetric and JUPEM topographic data into a regularly-spaced grid system essential for tsunami simulation. A primary objective of this paper is to develop the best Digital Elevation and Bathymetry Model (DEBM) for Penang based upon the most suitable and accurate interpolation method for integrating bathymetric and topographic data with minimal interpolation errors. We analyze four commonly used interpolation methods for generating gridded topographic and bathymetric surfaces, namely (i) Kriging, (ii) Multiquadric (MQ), (iii) Thin Plate Spline (TPS) and (iv) Inverse Distance to Power (IDP). The study illustrated that the Kriging interpolation method produces an integrated bathymetric and topographic surface that best approximates the admiralty nautical chart of Penang essential for tsunami run-up and inundation simulations. Tsunami inundation scenarios critical to risk analysis and mitigation could then be developed using this DEBM for various earthquake scenarios, as presented in this paper for the 2004 Indian Ocean Tsunami.


2018 ◽  
Vol 92 (1) ◽  
pp. 327-346 ◽  
Author(s):  
Nguyen Ba Thuy ◽  
N. A. K. Nandasena ◽  
Vu Hai Dang ◽  
Norio Tanaka

Sign in / Sign up

Export Citation Format

Share Document