scholarly journals Vertical Distributions of Velocity and Concentration in Sediment-Laden Open-Channel Flow Based on a New Mixing-Length Concept

1995 ◽  
Vol 39 ◽  
pp. 531-536
Author(s):  
Motohiko UMEYAMA ◽  
Takao HORIGUCHI
2017 ◽  
Vol 44 (3) ◽  
pp. 161-173 ◽  
Author(s):  
Mehdi Heidari ◽  
Ram Balachandar ◽  
Vesselina Roussinova ◽  
Ronald M. Barron

In this paper, data sets for mean velocity distributions in smooth shallow open channel flow are reconsidered to evaluate the characteristics of the overlap region and estimate the friction velocity (u∗). Both new and existing velocity measurements are used in the analysis. The velocity profiles are obtained using laser Doppler velocimetry and particle image velocimetry at typical Reynolds numbers (20 000–60 000) achieved in laboratory flumes. Validation of the estimated u∗ values using different forms of power law is established by comparing these values with the ones available in literature. Also, the Reynolds shear stress distribution based on two-dimensional measurements validate the estimated u∗. The availability of new data sets allows one to verify the usefulness of the log-law and evaluate the log-law constants. Different fitting methods; least squares, derivative, and scattered methods are used to evaluate the value of von Kármán coefficient. It is found that the value of κ obtained from the least squares method varies between 0.35 and 0.51 and depends on the Reynolds number. This refutes the conventional constant value assumption for the von Kármán coefficient (κ = 0.41). By considering the Prandtl’s mixing-length theory, the present values of the von Kármán coefficient are used to evaluate the mixing length distributions. The mixing length distributions in smooth open channel flow are found to depend on Reθ.


1994 ◽  
Vol 30 (2) ◽  
pp. 53-61 ◽  
Author(s):  
Shiyu Li ◽  
Guang Hao Chen

A mathematical model is proposed to predict the removal of dissolved organic substances and the consumption of dissolved oxygen by attached biofilms in an open-channel flow. The model combines the biofilm equations with the conventional Streeter–Phelps type equations of river water quality by considering the mass transfer of organics and oxygen in the river water through the diffusion layer into the biofilm. It is assumed that the diffusion and reaction within the biofilm are of steady-state, and follow Monod kinetics. The model is solved numerically with a trial-and-error method. The simulation results of the model for an ideal case of river flow and biofilm show that the organic removal rate and oxygen consumption rate caused by the biofilm are greater than that by suspended biomass. The effects of diffusion layer thickness, flow velocity, and biofilm thickness on the change of river water quality are discussed.


2019 ◽  
Vol 57 (2) ◽  
pp. 280-282
Author(s):  
Shangtuo Qian ◽  
Hui Xu ◽  
Jiangang Feng

Sign in / Sign up

Export Citation Format

Share Document