scholarly journals NUMERICAL SIMULATION OF INTERNAL WAVES USING A SET OF FULLY NONLINEAR INTERNAL-WAVE EQUATIONS

2007 ◽  
Vol 51 ◽  
pp. 169-174 ◽  
Author(s):  
Taro KAKINUMA ◽  
Keisuke NAKAYAMA
2019 ◽  
Vol 485 (4) ◽  
pp. 428-433
Author(s):  
V. G. Baydulov ◽  
P. A. Lesovskiy

For the symmetry group of internal-wave equations, the mechanical content of invariants and symmetry transformations is determined. The performed comparison makes it possible to construct expressions for analogs of momentum, angular momentum, energy, Lorentz transformations, and other characteristics of special relativity and electro-dynamics. The expressions for the Lagrange function are defined, and the conservation laws are derived. An analogy is drawn both in the case of the absence of sources and currents in the Maxwell equations and in their presence.


2012 ◽  
Vol 695 ◽  
pp. 341-365 ◽  
Author(s):  
Philip L.-F. Liu ◽  
Xiaoming Wang

AbstractIn this paper, a multi-layer model is developed for the purpose of studying nonlinear internal wave propagation in shallow water. The methodology employed in constructing the multi-layer model is similar to that used in deriving Boussinesq-type equations for surface gravity waves. It can also be viewed as an extension of the two-layer model developed by Choi & Camassa. The multi-layer model approximates the continuous density stratification by an $N$-layer fluid system in which a constant density is assumed in each layer. This allows the model to investigate higher-mode internal waves. Furthermore, the model is capable of simulating large-amplitude internal waves up to the breaking point. However, the model is limited by the assumption that the total water depth is shallow in comparison with the wavelength of interest. Furthermore, the vertical vorticity must vanish, while the horizontal vorticity components are weak. Numerical examples for strongly nonlinear waves are compared with laboratory data and other numerical studies in a two-layer fluid system. Good agreement is observed. The generation and propagation of mode-1 and mode-2 internal waves and their interactions with bottom topography are also investigated.


2021 ◽  
Author(s):  
Gabin Urbancic ◽  
Kevin Lamb ◽  
Ilker Fer ◽  
Laurie Padman

<p>North of the critical latitude (78.4), internal waves of the M<sub>2</sub> tidal frequency can no longer freely propagate, and the energy conversion from the barotropic to the internal tides vanishes. Near the continental slopes around the Arctic Ocean, internal wave energy is enhanced and comparable to values at mid-latitudes (Rippeth et al. 2015, Levine et al. 1985). Observations on the northern flank of the Yermak Plateau (YP) has characterized the region as one of enhanced internal wave activity and nonlinear internal waves have been observed (Czipott et al. 1991, Padman and Dillon 1991).</p><p>The YP is a bathymetry feature stretching out into the Fram Strait north-west of Svalbard. The YP plays a prominent role in the Arctic’s heat balance due to its interaction with the West-Spitsbergen current which is a main contributor to the heat transport into the Arctic Ocean. Nonlinear waves generated over the YP are a significant energy source for mixing and can therefore modulate and force exchange processes.</p><p>To study the nonlinear internal wave generation mechanisms over the YP, we used a high resolution, nonlinear, non-hydrostatic model. We found that nonlinear internal waves are forced not by the M<sub>2</sub> but the K<sub>1</sub> tide which has been observed to have significant variability over the YP (Padman et al. 1992). Barotropic, diurnal shelf waves generated on the eastern side of the YP propagates counter-clockwise, amplifying the cross-slope currents. This amplification is the necessary condition for nonlinear internal wave generation over the YP.</p>


2011 ◽  
Vol 1 (32) ◽  
pp. 34 ◽  
Author(s):  
Keisuke Nakayama ◽  
Tetsuya Shintani ◽  
Taro Kakinuma ◽  
Yasuyuki Maruya ◽  
Yoshinori Yonome ◽  
...  

This paper describes the influence of surface waves on salt-wedge intrusion in terms of radiation stress. Radiation stress may increase salt-wedge intrusion when surface waves propagate up a river. This study thus aims to reveal the effect of radiation stress on the distance of salt-wedge intrusion by using fully nonlinear strongly dispersive internal wave equations and three-dimensional numerical computation model, Fantom3D. Fully nonlinear strongly dispersive internal wave model reveals the possibility that large radiation stress is induced near the river mouth and increases the distance of salt-wedge intrusion. Three-dimensional numerical model also demonstrates that there is a significant difference in the intrusion distance by taking into account radiation stress.


2009 ◽  
Author(s):  
Nikolay Makarenko ◽  
Zhanna Maltseva ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

Sign in / Sign up

Export Citation Format

Share Document