scholarly journals Alkali Pretreatment of Rice Straw to Enhance Enzymatic Hydrolysis for Bioethanol Production

Author(s):  
Wendy Mateo ◽  
Victorino Taylan ◽  
Perla Florendo ◽  
Rosalie Rafael ◽  
Emmanuel V. Sicat
2011 ◽  
Vol 347-353 ◽  
pp. 2541-2544
Author(s):  
Benjarat Laobussararak ◽  
Warawut Chulalaksananukul ◽  
Orathai Chavalparit

This study was to investigate the fermentation of rice straw using various microorganisms, i.e., the bacterium Zymomonas mobilis, a distillery yeast Saccharomyces cerevisiae and a co-culture of Zymomonas mobilis and Saccharomyces cerevisiae. Rice straw was pretreated with alkaline and followed by enzymatic hydrolysis using cellulase before fermentation by the bacterium and a distillery yeast. Results show that alkali pretreatment is appropriate for rice straw since this pretreatment condition can produce the maximum cellulose of 88.96% and reducing sugar content of 9.18 g/l. Furthermore, the ethanol yield after enzymatic hydrolysis (expressed as % theoretical yield) was 15.94-19.73% for the bacterium, 20.48-35.70% for yeast and 21.56-29.89% for co-culture. Therefore, the distillery yeast was a suitable microorganism for ethanol production from rice straw.


2017 ◽  
Vol 19 (5) ◽  
pp. 1313-1322 ◽  
Author(s):  
Nguyen Thi Minh Phuong ◽  
Phan Huy Hoang ◽  
Le Quang Dien ◽  
Doan Thai Hoa

2019 ◽  
Vol 62 (6) ◽  
pp. 1705-1711
Author(s):  
Yutao Liu ◽  
Xicun Chai ◽  
Mingmei Chi

Abstract. Current pretreatments to digest cellulose straw are characterized by high energy consumption, environmental pollution, and other problems that limit straw biomass utilization. In this work, a rice straw rubbing pretreatment that is less energy-intensive than existing pretreatments is proposed to partly destroy the silicon layer. The rubbing pretreatment did not significantly increase the enzymatic hydrolysis-reducing sugar production rate of rice straw, but it enhanced the effect of subsequent dilute alkali pretreatment. The enzymatic hydrolysis-reducing sugar production rate after combined rubbing and alkali pretreatment was 33.63%, which was significantly higher than the rates achieved with original straw and with dilute alkali pretreatment alone. Rubbing pretreatment removed 33.40% of the surface silicon from the straw. This was significantly higher than the removal rates for original straw and dilute alkali pretreatment alone, but there was no marked difference in removal rate between the rubbing pretreatment and the combined rubbing and alkali pretreatment. The results indicate that rubbing pretreatment is an effective way to promote the efficiency of alkali pretreatment, and combined rubbing and alkali pretreatment greatly enhances the efficient utilization of rice straw.Highlights33.40% of the silicon layer on the surface of rice straw was removed by the rubbing pretreatment.Cracks caused by the rubbing pretreatment are beneficial for chemical reagents to access the inner composites.The rubbing pretreatment could enhance the efficiency of follow-up treatments for rice straw. Keywords: Rice straw, Rubbing pretreatment, Silicon layer, Sugar yield, Structure.


2021 ◽  
pp. 0958305X2110450
Author(s):  
Ahmed K. Saleh ◽  
Yasser R. Abdel-Fattah ◽  
Nadia A. Soliman ◽  
Maha M. Ibrahim ◽  
Mohamed H. El-Sayed ◽  
...  

This study investigated bioethanol production from rice straw (RS) and sugarcane bagasse (SCB) which containing 72.8 and 73.2% holocellulose, 56.8 and 58.6% α-cellulose, and 14.9 and 25.1% lignin for RS and SCB, respectively. To eliminate the lignin content, different pretreatment conditions, such as hot water, dilute acid, and acid-alkali, were designed. Acid-alkali was characterized as the best pretreatment for removing ∼79 and 70% of lignin, α-cellulose increased 91.4 and 91%, and holocellulose reached 90.8 and 90% for RS and SCB, respectively. The results revealed that acid-alkali was highly efficient than other pretreatment used for both RS and SCB. After enzymatic hydrolysis of acid-alkali-treated RS and SCB with cellulase, glucose concentrations reached 45 and 42 g/l, respectively. Pichia occidentalis AS.2 was isolated and identified based on 18S rRNA sequencing as a bioethanol producer. Maximization of bioethanol production by P. occidentalis AS.2 using the resulting glucose as a carbon source from RS and SCB was studied using an experimental design. The pH, incubation period, and inoculum size were optimized using Box-Behnken designs (BBD), the final conditions for bioethanol production used 100 g/l acid-alkali-treated fibers, 10 ml cellulase enzyme at 50°C for 5 days at 75 rpm for enzymatic hydrolysis. After time consumed and adjusting the pH to 6, the mixture was inoculated with 2.5% P. occidentalis AS.2 and incubated at 35°C for 24 h at 200 rpm to increase the bioethanol yield by 1.39-fold to 23.7 and 21.4 g/l compared to initial production (17 and 15.3 g/l) between RS and SCB, respectively.


Sign in / Sign up

Export Citation Format

Share Document