scholarly journals Immediate increase in arterial blood flow in embolized hepatic segments after portal vein embolization: CT demonstration.

1998 ◽  
Vol 171 (4) ◽  
pp. 1037-1039 ◽  
Author(s):  
M Nagino ◽  
Y Nimura ◽  
J Kamiya ◽  
M Kanai ◽  
N Hayakawa ◽  
...  
1987 ◽  
Vol 253 (5) ◽  
pp. H1053-H1058
Author(s):  
N. Terada ◽  
S. Koyama ◽  
J. Horiuchi ◽  
T. Takeuchi

We evaluated involvement of adrenergic receptors in the responses of the hepatic vasculature to reduction either of portal venous flow or hepatic arterial inflow. Portal vein occlusion caused an increase in hepatic arterial blood flow (HAF) and decreases in hepatic arterial pressure (HAP) and hepatic arterial vascular resistance (HAR) in the intact group. After pretreatment with either yohimbine or prazosin, but not propranolol, occlusion of the portal vein produced a greater decrease in HAP as compared with that in the intact group. No significant changes in HAF, HAR, or hepatic tissue blood flow (HTF) occurred after the treatment. These results indicate that the compensatory response of the hepatic arterial vasculature to altered portal blood flow (PVF) is regulated independently of the intrahepatic adrenergic receptors. Hepatic arterial occlusion caused a significant decrease in portal venous pressure, PVF, and HTF. Portal venous vascular resistance (PVR) was reduced slightly, but not significantly. After pretreatment with either yohimbine or prazosin, but not propranolol, occlusion of the hepatic artery produced an opposite effect: to increase PVF and significantly decrease PVR. These results indicate that intrahepatic alpha-adrenoceptors participate in the regulation of portal vascular tone to maintain portal vein pressure at a steady level, when inflow from the hepatic artery is reduced.


1985 ◽  
Vol 68 (1) ◽  
pp. 23-28 ◽  
Author(s):  
D. Lebrec ◽  
L. Blanchet

1. Splanchnic organ blood flow and cardiac output were measured by the microsphere method in fasted rats with prehepatic portal hypertension due to portal vein stenosis, in rats with intrahepatic portal hypertension due to bile duct ligation, and in unoperated normal rats. 2. Portal venous pressure was higher in both groups of portal hypertensive rats than in normal rats. Cardiac output was significantly higher in portal hypertensive rats than in normal rats. 3. In rats with portal vein stenosis, splanchnic blood flow was higher than in controls. This increase was caused by increased perfusion of all organs drained by the portal vein, and by increased hepatic arterial blood flow. In rats with bile duct ligation, splanchnic blood flow was not significantly higher than in normal rats: haemoperfusion of all organs contributing to the portal circulation decreased, whereas hepatic arterial blood flow increased. As cardiac output rose similarly, the differences observed between the two types of portal hypertension depend mainly on the difference in distribution of flow within the splanchnic bed.


2008 ◽  
Vol 295 (6) ◽  
pp. G1266-G1273 ◽  
Author(s):  
Nikolai Siebert ◽  
Daniel Cantré ◽  
Christian Eipel ◽  
Brigitte Vollmar

Hepatic blood supply is uniquely regulated by the hepatic arterial buffer response (HABR), counteracting alterations of portal venous blood flow by flow changes of the hepatic artery. Hydrogen sulfide (H2S) has been recognized as a novel signaling molecule with vasoactive properties. However, the contribution of H2S in mediating the HABR is not yet studied. In pentobarbital-anesthetized and laparotomized rats, flow probes around the portal vein and hepatic artery allowed for assessment of the portal venous (PVBF) and hepatic arterial blood flow (HABF) under baseline conditions and stepwise reduction of PVBF for induction of HABR. Animals received either the H2S donor Na2S, DL-propargylglycine as inhibitor of the H2S synthesizing enzyme cystathionine-γ-lyase (CSE), or saline alone. Additionally, animals were treated with Na2S and the ATP-sensitive potassium channel (KATP) inhibitor glibenclamide or with glibenclamide alone. Na2S markedly increased the buffer capacity to 27.4 ± 3.0% ( P < 0.05 vs. controls: 15.5 ± 1.7%), whereas blockade of H2S formation by DL-propargylglycine significantly reduced the buffer capacity (8.5 ± 1.4%). Glibenclamide completely reversed the H2S-induced increase of buffer capacity to the control level. By means of RT-PCR, Western blot analysis, and immunohistochemistry, we observed the expression of both H2S synthesizing enzymes (CSE and cystathionine-β-synthase) in aorta, vena cava, hepatic artery, and portal vein, as well as in hepatic parenchymal tissue. Terminal branches of the hepatic afferent vessels expressed only CSE. We show for the first time that CSE-derived H2S contributes to HABR and partly mediates vasorelaxation of the hepatic artery via activation of KATP channels.


2021 ◽  
Vol 23 (3) ◽  
pp. 363-369
Author(s):  
A. S. Tugushev ◽  
O. S. Cherkovska ◽  
D. I. Mikhantiev

The aim. To assess the hemodynamic parameters of the hepatic and visceral blood flow in patients with compensated and decompensated liver cirrhosis. Materials and methods. 290 patients with liver cirrhosis were examined: 206 had gastrointestinal bleeding, 84 had diuretic-resistant ascites. Ultrasonic scanning, Doppler sonography, esophagogastroduodenoscopy, angiography, radioisotope scintigraphy were performed to assess blood flow in the portal, splenic and superior mesenteric veins and in the hepatic, splenic and superior mesenteric arteries. Results. Change in the hepatic microcirculatory blood flow in the natural course of liver cirrhosis was characterized by decreased portal and increased arterial blood flow, “arterialization” of hepatic blood flow based on scintigraphy. Decompensation of the disease was associated with progressive reduction in both portal and arterial hepatic blood flow, which were correlated with the severity of functional liver disorders regardless of the complication nature. The portal blood flow in the natural course of liver cirrhosis was characterized by 3.5–4.5 times increased volume of visceral blood. Decompensation of the disease was accompanied by a decrease in blood flow in the portal vein as compared to the splenic and superior mesenteric veins by 1.8–2.2 and 1.5–2.7 times, respectively. Arterial blood flow in the natural course of liver cirrhosis was characterized by a relatively increased hepatic arterial flow. The ultrasound criterion of hepatic blood flow “arterialization” was an increase in hepatic-splenic arterial index, which can be used as a sign to differentiate between different forms of portal hypertension. Decompensation of the disease was characterized by an average of 8.2 % decreased arterial blood flow in the hepatic artery compared to the splenic artery in dynamics. Prognostically unfavorable signs were the progression of splenomegaly degree, the increase in the portal vein diameter with the decreased velocity characterizing the increase in congestive index by 2.4–2.6 times, the decrease in the hepatic artery diameter and velocity in it over time.Conclusions. The hepatic and visceral blood flow characteristics should be considered when choosing method of conservative, surgical or minimally invasive treatment of liver cirrhosis complications. Based on the hepatic hemodynamic characteristics, the mismatch between portal perfusion (reduced) and visceral blood flow (increased) is the essence of portal hypertension in liver cirrhosis. Accordingly, the criterion of treatment effectiveness in decompensated liver cirrhosis should be improved portal liver perfusion and (or) reduced volume of visceral blood flow.


1976 ◽  
Vol 230 (5) ◽  
pp. 1394-1399 ◽  
Author(s):  
LJ Hirsch ◽  
T Ayabe ◽  
G Glick

As measured by electromagnetic blood flow transducers, direct infusion of epinephrine, norepinephrine, and dopamine into the portal vein (PV) produced a 40-50% decrease in hepatic arterial (HA) blood flow; isoproterenol increased HA flow by about 69%. No changes in PV flow or pressure were observed. Direct HA infusion of the vasoconstrictors decreased HA flow by amounts comparable to those occurring after PV infusion. However, HA infusion of isoproterenol increased HA flow only 15% suggesting a difference in beta-receptor population in the two vessels. When infused directly into the superior mesenteric artery (SMA), epinephrine and norepinephrine reduced SMA flow by about 45% and PV flow by 20-25%; HA flow increased 6-8%. Infusion of isoproterenol and dopamine into SMA increased SMA flow by 115% and 206% and PV flow by 60% and 70%, respectively, whereas HA flow decreased by 25% and 50%. Portal vein pressure increased less than 3 mmHg. Alpha- and beta-receptor blockade of the liver did not change significantly the alterations in hepatic arterial blood flow that were secondary to changes in portal venous blood flow. It is likely that regulation of hepatic arterial flow resides in mechanisms located within the liver sinusoids.


Sign in / Sign up

Export Citation Format

Share Document