liver sinusoids
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 15)

H-INDEX

36
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susan Bengs ◽  
Alexia Rossi ◽  
Martina Haberecker ◽  
Nidaa Mikail ◽  
Alexander Meisel ◽  
...  

AbstractPrevious work indicates that SARS-CoV-2 virus entry proteins angiotensin-converting enzyme 2 (ACE-2) and the cell surface transmembrane protease serine 2 (TMPRSS-2) are regulated by sex hormones. However, clinical studies addressing this association have yielded conflicting results. We sought to analyze the impact of sex hormones, age, and cardiovascular disease on ACE-2 and TMPRSS-2 expression in different mouse models. ACE-2 and TMPRSS-2 expression was analyzed by immunostaining in a variety of tissues obtained from FVB/N mice undergoing either gonadectomy or sham-surgery and being subjected to ischemia–reperfusion injury or transverse aortic constriction surgery. In lung tissues sex did not have a significant impact on the expression of ACE-2 and TMPRSS-2. On the contrary, following myocardial injury, female sex was associated to a lower expression of ACE-2 at the level of the kidney tubules. In addition, after myocardial injury, a significant correlation between younger age and higher expression of both ACE-2 and TMPRSS-2 was observed for lung alveoli and bronchioli, kidney tubules, and liver sinusoids. Our experimental data indicate that gonadal hormones and biological sex do not alter ACE-2 and TMPRSS-2 expression in the respiratory tract in mice, independent of disease state. Thus, sex differences in ACE-2 and TMPRSS-2 protein expression observed in mice may not explain the higher disease burden of COVID-19 among men.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2712
Author(s):  
Jan K. Hennigs ◽  
Christiane Matuszcak ◽  
Martin Trepel ◽  
Jakob Körbelin

Forming the inner layer of the vascular system, endothelial cells (ECs) facilitate a multitude of crucial physiological processes throughout the body. Vascular ECs enable the vessel wall passage of nutrients and diffusion of oxygen from the blood into adjacent cellular structures. ECs regulate vascular tone and blood coagulation as well as adhesion and transmigration of circulating cells. The multitude of EC functions is reflected by tremendous cellular diversity. Vascular ECs can form extremely tight barriers, thereby restricting the passage of xenobiotics or immune cell invasion, whereas, in other organ systems, the endothelial layer is fenestrated (e.g., glomeruli in the kidney), or discontinuous (e.g., liver sinusoids) and less dense to allow for rapid molecular exchange. ECs not only differ between organs or vascular systems, they also change along the vascular tree and specialized subpopulations of ECs can be found within the capillaries of a single organ. Molecular tools that enable selective vascular targeting are helpful to experimentally dissect the role of distinct EC populations, to improve molecular imaging and pave the way for novel treatment options for vascular diseases. This review provides an overview of endothelial diversity and highlights the most successful methods for selective targeting of distinct EC subpopulations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Serena Li-Sue Yan ◽  
Il-Young Hwang ◽  
Olena Kamenyeva ◽  
Juraj Kabat ◽  
Ji Sung Kim ◽  
...  

Neutrophil trafficking, homeostatic and pathogen elicited, depends upon chemoattractant receptors triggering heterotrimeric G-protein Gαiβγ signaling, whose magnitude and kinetics are governed by RGS protein/Gαi interactions. RGS proteins typically limit Gαi signaling by reducing the duration that Gαi subunits remain GTP bound and able to activate downstream effectors. Yet how in totality RGS proteins shape neutrophil chemoattractant receptor activated responses remains unclear. Here, we show that C57Bl/6 mouse neutrophils containing a genomic knock-in of a mutation that disables all RGS protein-Gαi2 interactions (G184S) cannot properly balance chemoattractant receptor signaling, nor appropriately respond to inflammatory insults. Mutant neutrophils accumulate in mouse bone marrow, spleen, lung, and liver; despite neutropenia and an intrinsic inability to properly mobilize from the bone marrow. In vitro they rapidly adhere to ICAM-1 coated plates, but in vivo they poorly adhere to blood vessel endothelium. Those few neutrophils that cross blood vessels and enter tissues migrate haphazardly. Following Concanavalin-A administration fragmented G184S neutrophils accumulate in liver sinusoids leading to thrombo-inflammation and perivasculitis. Thus, neutrophil Gαi2/RGS protein interactions both limit and facilitate Gαi2 signaling thereby promoting normal neutrophil trafficking, aging, and clearance.


2021 ◽  
Vol 191 (3) ◽  
pp. 603-615
Author(s):  
Edwin L. de Vrij ◽  
Hjalmar R. Bouma ◽  
Maaike Goris ◽  
Ulrike Weerman ◽  
Anne P. de Groot ◽  
...  

AbstractImmobility is a risk factor for thrombosis due to low blood flow, which may result in activation of the coagulation system, recruitment of platelets and clot formation. Nevertheless, hibernating animals—who endure lengthy periods of immobility—do not show signs of thrombosis throughout or after hibernation. One of the adaptations of hemostasis in hibernators consists of a rapidly reversible reduction of the number of circulating platelets during torpor, i.e., the hibernation phase with reduction of metabolic rate, low blood flow and immobility. It is unknown whether these platelet dynamics in hibernating hamsters originate from storage and release, as suggested for ground squirrel, or from breakdown and de novo synthesis. A reduction in detaching forces due to low blood flow can induce reversible adhesion of platelets to the vessel wall, which is called margination. Here, we hypothesized that storage-and-release by margination to the vessel wall induces reversible thrombocytopenia in torpor. Therefore, we transfused labeled platelets in hibernating Syrian hamster (Mesocricetus auratus) and platelets were analyzed using flow cytometry and electron microscopy. The half-life of labeled platelets was extended from 20 to 30 h in hibernating animals compared to non-hibernating control hamsters. More than 90% of labeled platelets were cleared from the circulation during torpor, followed by emergence during arousal which supports storage-and-release to govern thrombocytopenia in torpor. Furthermore, the low number of immature platelets, plasma level of interleukin-1α and normal numbers of megakaryocytes in bone marrow make platelet synthesis or megakaryocyte rupture via interleukin-1α unlikely to account for the recovery of platelet counts upon arousal. Finally, using large-scale electron microscopy we revealed platelets to accumulate in liver sinusoids, but not in spleen or lung, during torpor. These results thus demonstrate that platelet dynamics in hibernation are caused by storage and release of platelets, most likely by margination to the vessel wall in liver sinusoids. Translating the molecular mechanisms that govern platelet retention in the liver, may be of major relevance for hemostatic management in (accidental) hypothermia and for the development of novel anti-thrombotic strategies.


Author(s):  
Brady Trevisan ◽  
Alshaimaa Morsi ◽  
Julio Aleman ◽  
Martin Rodriguez ◽  
Jordan Shields ◽  
...  

Microfluidic technology enables recapitulation of organ-level physiology to answer pertinent questions regarding biological systems that otherwise would remain unanswered. We have previously reported on the development of a novel product consisting of human placental cells (PLC) engineered to overexpress a therapeutic factor VIII (FVIII) transgene, mcoET3 (PLC-mcoET3), to treat Hemophilia A (HA). Here, microfluidic devices were manufactured to model the physiological shear stress in liver sinusoids, where infused PLC-mcoET3 are thought to lodge after administration, to help us predict the therapeutic outcome of this novel biological strategy. In addition to the therapeutic transgene, PLC-mcoET3 also constitutively produce endogenous FVIII and von Willebrand factor (vWF), which plays a critical role in FVIII function, immunogenicity, stability, and clearance. While vWF is known to respond to flow by changing conformation, whether and how shear stress affects the production and secretion of vWF and FVIII has not been explored. We demonstrated that exposure of PLC-mcoET3 to physiological levels of shear stress present within the liver sinusoids significantly reduced mRNA levels and secreted FVIII and vWF when compared to static conditions. In contrast, mRNA for the vector-encoded mcoET3 was unaltered by flow. To determine the mechanism responsible for the observed decrease in FVIII and vWF mRNA, PCR arrays were performed to evaluate expression of genes involved in shear mechanosensing pathways. We found that flow conditions led to a significant increase in KLF2, which induces miRNAs that negatively regulate expression of FVIII and vWF, providing a mechanistic explanation for the reduced expression of these proteins in PLC under conditions of flow. In conclusion, microfluidic technology allowed us to unmask novel pathways by which endogenous FVIII and vWF are affected by shear stress, while demonstrating that expression of the therapeutic mcoET3 gene will be maintained in the gene-modified PLCs upon transplantation, irrespective of whether they engraft within sites that expose them to conditions of shear stress.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 509
Author(s):  
Fatma Abo Zakaib Ali ◽  
Fatma M. Abdel-Maksoud ◽  
Hekmat Osman Abd Elaziz ◽  
Ashraf Al-Brakati ◽  
Ehab Kotb Elmahallawy

Liver sinusoids are lined by fenestrated endothelial cells surrounded by perisinusoidal cells, Kupffer cells, and pit cells, as well as large granular lymphocytes. The functional ability of the liver cells can be substantially modified by exposure to toxins. In the current work, we assessed the histopathological and ultrastructural effects of a time-course exposure to aflatoxin B1 (AFB1) on the hepatic structures of rats. A total of 30 adult female Wistar rats were randomly divided into three groups: a control group, a group orally administered 250 µg/kg body weight/day of AFB1 for 5 days/week over 4 weeks, and a group that received the same AFB1 treatment but over 8 weeks. Histopathological and ultrastructural examinations of hepatocytes revealed massive vacuolar degeneration and signs of necrosis. Furthermore, the rat liver of the treated group exhibited damage to the sinusoidal endothelium, invasion of the space of Disse with hyperactive Kupffer cells, and some immune cells, as well as Ito cells overloaded with lipids. In addition, damaged telocytes were observed. Taken together, our results indicate that AFB1 induces irreversible adverse effects on the livers of rats.


2021 ◽  
Vol 11 ◽  
Author(s):  
Hunter Bennett ◽  
Ty D. Troutman ◽  
Mashito Sakai ◽  
Christopher K. Glass

Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.


Cancers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3694
Author(s):  
Asad Javed ◽  
Mohammed Milhem

Uveal melanoma has a high mortality rate following metastasis to the liver. Despite advances in systemic immune therapy, treatment of metastatic uveal melanoma (MUM) has failed to achieve long term durable responses. Barriers to success with immune therapy include the immune regulatory nature of uveal melanoma as well as the immune tolerant environment of the liver. To adequately harness the anti-tumor potential of the immune system, non-T cell-based approaches need to be explored. Natural Killer (NK) cells possess potent ability to target tumor cells via innate and adaptive responses. In this review, we discuss evidence that highlights the role of NK cell surveillance and targeting of uveal melanoma. We also discuss the repertoire of intra-hepatic NK cells. The human liver has a vast and diverse lymphoid population and NK cells comprise 50% of the hepatic lymphocytes. Hepatic NK cells share a common niche with uveal melanoma micro-metastasis within the liver sinusoids. It is, therefore, crucial to understand and investigate the role of intra-hepatic NK cells in the control or progression of MUM.


2020 ◽  
Author(s):  
Harshana Rajakaruna ◽  
Jame O'Connor ◽  
Ian A Cockburn ◽  
Vitaly V Ganusov

Pathogen-specific CD8 T cells face the problem of finding rare cells that present their cognate antigen either in the lymph node or infected tissue. To optimize the search for rare targets it has been proposed that T cells might perform a random walk with long displacements called Levy walks enabling superdiffusive behavior and shorter search times. Many agents ranging from cells to large animals have been found to perform Levy walks suggesting that Levy walk-based search strategies may be evolutionary selected. However, whether random walk patterns are driven by agent-intrinsic programs or shaped by environmental factors remains largely unknown. To address this problem we examined the behavior of activated CD8 T cells in the liver where both the movement of the cells and the underlying structural constraints can be clearly defined. We show that Plasmodium-specific liver-localized CD8 T cells perform short displacement, Brownian-like walks and yet display superdiffusive overall displacement, the cardinal feature of efficient Levy walks. Because liver-localized CD8 T cells are mainly associated with liver sinusoids, simulations of Brownian or Levy walkers in structures derived from the liver sinusoids illustrate that structure alone can enforce superdiffusive movement. We show that linear structure of the sinusoids is sufficient to cause T cells to superdiffuse even when cell-intrinsic movement lengths are Brownian given preference for forward movement. Moreover, Brownian walkers require less time to find a rare target when T cells search for the infection in physiologically-derived liver structures. Importantly, analysis of fibroblastic reticular cell networks on which CD8 T cells move in lymph nodes also allows for superdiffusion in simulations, though this is not observed experimentally, suggesting that structure is not the only factor determining movement patterns of T cells. Our results strongly suggest that observed patterns of movement of CD8 T cells are likely to result from a combination of cell-intrinsic movement programs, physical constraints imposed by the environmental structures, and other environmental cues. Future work needs to focus on quantifying the relative contributions of these factors to the overall observed movement patterns of biological agents.


Sign in / Sign up

Export Citation Format

Share Document