scholarly journals Assessment of Free and Total Cyanide Levels in the Water Environment of Shatt Al-Arab

2020 ◽  
Vol 20 (4) ◽  
pp. 880
Author(s):  
Zuhair Ali Abdulnabi

The concentration of free and total cyanide in waters was measured by using the colorimetric method through complex formation with pyridine-barbituric acid at the wavelength of 578 nm. Ten stations were selected from water surfaces in the south of Iraq. The samples were distributed among two stations, one was on Euphrates River and the other was on Tigris River (before their confluence and formatting of Shatt Al-Arab) and selected seven stations along Shatt Al-Arab River. All the samples were collected from surface water at depth of 10–15 cm and their pH was adjusted to 12 by using sodium hydroxide. The results showed the highest concentration of free cyanide (0.254 mg/L) in station W7 and the lowest concentration in stations W2, W9 and W10, while the highest and lowest concentration of total cyanide (9.962, 0.207 mg/L) were recorded in station W7 and W1 respectively. The standard deviation of all sites (n = 3) of free and total cyanide was calculated and showed 0.007–0.048 and 0.001–0.042 ranges respectively. Furthermore, some of the physico-chemical properties of water were recorded in these stations.

1970 ◽  
Vol 42 (4) ◽  
pp. 475-482 ◽  
Author(s):  
M Badrul Islam ◽  
M Zahurul Haque ◽  
N Shamsul Islam

Certain complex compounds were synthesized by the interaction of Mg(II), Ca(II) and Fe(III) halides with the solvent extracting reagent, Cyanex-272 i.e. bis (2,4,4- trimethylpentyl) phosphinic acid as ligand. All the prepared complexes have been characterized on the basis of their molar masses, conductivity, magnetic measurements and infrared and electronic spectral studies. The other physico-chemical properties e.g. colour, decomposition temperature have also been ascertained. Key words: Chanex-272 Bangladesh J. Sci. Ind. Res. 42(4), 475-482, 2007


2012 ◽  
Vol 1 (3) ◽  
pp. 493
Author(s):  
H.O Nwankwoala

In recent times, ecohydrology and hydroecology are making a mark on theenvironmental agenda, as evidenced by the proliferation of these terms in theacademic literature. There is an increasing recognition that groundwater is essentialto many ecological communities. Surface ecological processes (such asevapotranspiration) significantly impact hydrological responses and relatedhydrochemical function. Thus, the relation of groundwater hydrology to patternsand processes in ecology is a ‘two-way street’ where understanding the feedback ofone to the other serves as a powerful lens through which to evaluate and explainthe functioning of natural ecosystems. Influxes of groundwater to lakes, rivers, andwetlands can change whole-system physico-chemical properties such astemperature and salinity, while also providing more subtle influences onmicroenvironments and their ecological processes. The recognition of thesignificance and power of this tandem has not always been followed with effectiveinterdisciplinary science. The ecological, hydrological, and physico-chemical linksbetween groundwater, surface water and associated ecosystems are seldom fullyunderstood even though true characterization and wise management will require amultidisciplinary approach. This means biologists need to understand theimportance of magnitude and timing of groundwater flows for their system, whichrequires the skills of hydrogeologists to achieve. Hydrogeologists, in turn, mustunderstand how and why groundwater influences ecological processes so that theirexpertise is brought to bear at a scale commensurate to the ecological researchquestion. In this paper therefore, an overview of general concepts, research effortsand future perspectives are presented. More importantly, the paper asserts that it isnot simply the integration of hydrology and ecology that will determine the futureprospects for ecohydrology/hydroecology, but the way in which this integrativescience is conducted.


2021 ◽  
Vol 42 (3) ◽  
pp. 700-704
Author(s):  
Anbarasu Mariyappillai ◽  
◽  
Gurusamy Arumugam ◽  

Aim: To evaluate the physico-chemical and hydrological characteristics of cocopith, perlite, vermicullite, vermicompost, sand, rice husk, paddy straw, saw dust and rock wool for using them as substrates for soilless agriculture. Methodology: The soilless substrates were initially evaluated for pH and EC, and then estimated for total organic carbon by dry combustion method, total nitrogen by Kjeldahl digestion method, potassium by atomic absorption and phosphorus by colorimetric method. The hydrological properties of substrates were estimated by Keen - Rackzowski box method. Results: The desirable level of physical properties of bulk density (0.47 gm cm-3), particle density (0.63 gm cm-3), total porosity (75.81%) and chemical properties of pH (6.23), EC (5.02 dS m-1), total organic carbon (36.39 %), and other properties were noticed under cocopith. The maximum level of water holding capacity (769.30 %) and volume of expansion (185.78 %) was registered by cocopith. Interpretation: Cocopith has favourable hydrological properties with desirable level of physical and chemical properties, which makes it the best medium for soilless agriculture. Coconut fiber is a characteristic natural fiber from the external husk of coconut and its extraction process also without polluting nature.


2018 ◽  
Vol 5 (12) ◽  
pp. 181230 ◽  
Author(s):  
Yi-Xin Sun ◽  
Ying-Ying Wang ◽  
Bing-Bing Shen ◽  
Bi-Xian Zhang ◽  
Xiao-Mei Hu

A series of dicationic ionic liquids (ILs) including [C 4 (MIM) 2 ][PF 6 ] 2 , [C 5 (MIM) 2 ][PF 6 ] 2 , [C 6 (MIM) 2 ][PF 6 ] 2 and [C 4 (PYR) 2 ][PF 6 ] 2 were synthesized. Their thermal stability and melting points were analysed. It was found that dicationic ILs presented important implications in the design of homogeneous and heterogeneous system with water. A homogeneous system of dicationic ILs with water could be formed at a relatively high temperature and then a heterogeneous system was formed when the solution was cooled to a low temperature. The ILs recovered by altering the temperature were obtained in high percentage yields of [C 4 (MIM) 2 ][PF 6 ] 2 (97.6%), [C 5 (MIM) 2 ][PF 6 ] 2 (97.3%), [C 6 (MIM) 2 ][PF 6 ] 2 (98.0%) and [C 4 (PYR) 2 ][PF 6 ] 2 (94.2%). On the other hand, [C 4 (MIM) 2 ][PF 6 ] 2 and [C 5 (MIM) 2 ][PF 6 ] 2 exhibited good solubility in acetonitrile and acetone. A homogeneous system could be achieved with imidazolium-based ILs with a relatively low amount of water and acetonitrile at room temperature. All of the properties of dicationic ILs have a strong correlation with the nature of dications, the linkage chain and the symmetry of dications. Dicationic ILs may provide a new opportunity for some specific applications in order to enable the effective separation and isolation of products.


Author(s):  
N’Doufou Gnosseith Huberson Claver ◽  
Kouadio Koffi Hypolithe ◽  
De Lasm Omer Zephir ◽  
Zogoury Eddie Constant Fabrice

This work focuses on analyzing of physico-chemical properties of sediment affected by frequent floods along the eastern shore of the Bandama River in the department of Niakaramadougou. Sampling was from 4 excavated graves at two positions of studied area, one near the stream and the other one far away from the stream.. Samples collected were analyzed, including texture with granulometric analysis made by the Robinson pipette, and standard sediment analysis methods for measuring organic carbon (OC), nitrogen (N), and other chemical properties including pH, organic matter (OM), and C/N ratio. Statistical analyses were carried out to assess the differences between the physico-chemical parameters at different sampling areas. Differences are significant when comparing areas that are highly affected by floods and areas that are less affected by floods, especially for concentrations of OM, OC and nitrogen. Results show that successive floods are influencing directly the dynamic of physico-chemical properties of the sediments along the shore.


Author(s):  
Amit Mondal ◽  
Supriya Sarkar ◽  
Udayabhanu G. Nair

Abstract In the steel industry, cyanide in the wastewater is a major environmental concern. There are several chemical, physical, and biological treatment processes available for the removal of cyanide from industrial wastewater. But the efficacy of every treatment process depends on the complex elemental matrix of wastewater and the interference associated with them. Thus, water characterization plays a vital part in finding a suitable cyanide treatment process for any wastewater. Characterization data can give a clear overview of the complexity of cyanide in the wastewater, which ultimately helps in selecting the right remediation process. The present work includes comparative characterization of coke plant and blast furnace wastewater collected from an integrated steel plant. Three months of data for physico-chemical properties of the two different sources were analysed and compared. Pearson's correlation analysis of physico-chemical properties with free cyanide was also studied. The different forms of cyanide in coke plant and blast furnace water were also characterised, along with interference associated with them. It was observed that the water matrix of coke plant and blast furnace effluents are totally different. It was also evident that free cyanide concentration is much more affected in coke plant wastewater than in blast furnace water.


Sign in / Sign up

Export Citation Format

Share Document