scholarly journals The Effect of Hydrochloric Acid Solution and Glycerol on The Mechanical, Hydrate Properties and Degradation Rate of Biofilm from Ripe Banana Peels

2021 ◽  
Vol 15 (2) ◽  
pp. 202
Author(s):  
Putri Ramadhany ◽  
Justin Kenny Hardono ◽  
Maria Gabriela Kristanti

Banana peel is a biomass waste that has not been utilised optimally, despite its high starch content. Moreover, starch has potential as a raw material for biofilm or edible film production. This research focused on using the starch content from the mature banana peel to create a biofilm. Starch was extracted from the banana peel; then, it was hydrolyzed with a variation of hydrochloric acid solution (HCl) of 0.5 M (0, 2, 4 %-v/v Starch). Glycerol (0, 20, 40 %-w/w starch) was used as a plasticizer. It was found that the formulation of 4%-v/v HCl solution and glycerol 20%-w/w resulted in the highest biofilm’s tensile strength of 4.18 MPa. However, the elongation break percentage achieved the best result at 20,2% when the formulation of 0%-v/v HCl solution and 40%-w/w glycerol was applied. Increasing HCl solution and glycerol was proven to improve the biofilm’s solubility in the water, where 47.9% solubility was attained in the formulation of 40%-w/w glycerol and 4%-v/v HCl solution. The degradation rate of biofilm in the soil was measured using zero- and first-order kinetic rates. The zero-order resulted in the best model with a half-life time (t1/2) between 73 to 108 days.

RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24576-24588 ◽  
Author(s):  
H. S. Gadow ◽  
M. M. Motawea

The inhibitive effect and adsorption behavior of ginger roots extract (GRE) on the corrosion of carbon steel in 1.0 M HCl solution at different temperatures were investigated.


RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90542-90549 ◽  
Author(s):  
Shi Mo ◽  
Ting Ting Qin ◽  
Hong Qun Luo ◽  
Nian Bing Li

4-Octylphenol was used to form self-assembled films on copper to inhibit its corrosion in 0.5 M HCl solution.


1975 ◽  
Vol 28 (9) ◽  
pp. 1901 ◽  
Author(s):  
SF Lincoln ◽  
AC Sandercock ◽  
DR Stranks

The parameters describing chloride exchange on indium(III), determined by 35Cl N.M.R., are: k(298 K)= (8.8�0+4) x 106 s-1, ΔH? = 45.7�2.3 kJ mol-1 and ΔS? = 42�8 J mol-1 K-1; and k(298 K)= (2.0�0.1)x106 s-1, ΔH? = 37.7�1.9 kJ mol-1, and ΔS? = 3�6 J mol-1 K-1 in 10.95M and 7.00M aqueous hydrochloric acid respectively, calculated from the observed exchange rate kex4[InCl4(H2O)2-].��� For thallium(III) lower limits of kex(219 K) = 1.6 x 106 s-1 and 1.3 x 106 s-1 were obtained in 10.95M and 7.00M aqueous hydrochloric acid, respectively, where [TlCl6]3- is assumed to be the exchanging species.


Sign in / Sign up

Export Citation Format

Share Document