scholarly journals PERBAIKAN PROSES FERMENTASI BIJI KAKAO KERING DENGAN PENAMBAHAN TETES TEBU, KHAMIR, DAN BAKTERI ASAM ASETAT

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Donny Widianto, Ajeng Dara Pramita, Dan Sri Wedhastri

Most of cocoa beans produced by smallholder farmers were non fermented which can be improved by modifiedfermentation processing. This study was aimed to inverstigate the influence of molasses, yeast Saccharomycescerevisiae, and Acetobacter aceti addition on dried cocoa beans fermentation process.Fresh cocoa beans were dried in a glasshouse and its reducing sugar was analyzed before and after drying. Asmall plastic bucket (20 cm diameter and 30 cm height) with aeration holes was used as fermentation vessel. Driedcocoa beans were soaked in distilled water for 4 hours, inoculated with yeast and acetic acid bacteria cultures, andmolasses were added at two different concentration, i.e, 1 and 1.5 times of reducing sugar lost during drying.Reducing sugar, ethanol, titrated acid, population of yeast, and acetic acid bacteria were monitored duringfermentation. After fermentation the beans were sun dried and its pH and degree of fermentation were determinedto assess the bean quality.The results showed that the addition of molasses mostly at the level of 1.5, S. cerevisiae, and A. aceti increasereducing sugar, ethanol, titrated acid, yeast and acetic acid bacteria of fermentation liquid (pulp). The highestpercentage of fermented beans (68.4 %) was achieved by addition of S. cerevisiae, A. aceti, and molasses atthe level 1.5. It is likely that the addition of S. cerevisiae, A. aceti, and molasses could improve fermentationprocessing of dried cocoa bean.

2019 ◽  
Author(s):  
mulono apriyanto bin sugeng rijanto

The objectives of the study are: 1) to determine the composition of the original cocoa bean pulp as a substrate for fermentation; 2) evaluating the effect of variations in random cocoa bean fermentation techniques on microbial populations. The stages of research carried out are as follows (1) testing the composition and moisture content of asalan cocoa beans as a fermentation substrate. (2) Fermented cocoa beans with 3 variations of fermentation techniques namely first treatment without addition of inoculum (control), second using S. cerevisiae (FNCC 3056) inoculum, L. lactis (FNC 0086) and A. aceti (FNCC 0016), respectively. - about 108 cfu / g is given simultaneously at the beginning of fermentation (IA). (3) gradual administration of inoculum yeast at the beginning of fermentation, lactic acid bacteria at 24 hours and acetic acid bacteria at 48 hours with a microbial population equal to the second treatment (IB). Fermentation is carried out for 120 hours. The temperature is set during fermentation, respectively 35 oC (first 24 hours), 45 oC (second 24 hours), 55 oC (third 24 hours) and 35 oC (last 48 hours). The results showed that during the fermentation of random cocoa beans showed that all treatments increased ethanol consumption in line with the increasing population of S. cerevisiae at the beginning of fermentation. Furthermore, L. lactis increases followed by lactic acid, at the end of A. aceti fermentation increases with acetic acid. From the results of this study it can be concluded that the rehydration of asalan cocoa beans can improve the composition of the pulp as a fermentation substrate. Microbial population shows that microbial succession has been demonstrated by the gradual addition of the inoculum.


2019 ◽  
Author(s):  
mulono apriyanto bin sugeng rijanto

The research objectives were: 1) to know the composition of cocoa bean pulp as substrate for fermentation; 2) evaluate the effect of variationof cocoa seed fermentation technique on microbial population. Stages of research conducted are as follows (1) testing the composition and water content of cocoa bean pulp as a fermentation substrate. (2) Fermented cocoa beans with 3 variations of fermentation technique ie first treatment withoutaddition of inoculum (control), both using inoculum S. cerevisiae (FNCC 3056), L. lactis (FNC 0086) and A. aceti (FNCC 0016), respectively - about 108cfu/g is given simultaneously at the beginning of fermentation (IA). (3) gradual inoculum administration of yeast at the begi nning of fermentation, lacticacid bacteria at 24 hours and acetic acid bacteria at 48 h with microbial population equal to second treatment (IB). Fermentation is carried out for 120hours. Temperatures are adjusted during fermentation, respectively 35 oC (first 24 hours), 45 oC (24 second hours), 55 oC (24 hours three) and 35 oC(last 48 hours). The third stage of fermented cocoa beans from the three treatments was roasted and analyzed for their volati le compounds. The resultsshowed that during the fermentation of cocoa beans showed that all treatments increased the ethanol kosentarsi in line with the increasing population ofS. cerevisiae at the beginning of fermentation. Next L. lactis increased followed by lactic acid, at the end of A. aceti fermentation increased followed byacetic acid. From the results of this study it can be concluded that the rehydration of cocoa bean pulp can improve the composition of pulp asfermentation substrate. The microbial population indicated that there was a microbial succession shown in the gradual addition of inoculum treatment.


2006 ◽  
Vol 72 (1) ◽  
pp. 497-505 ◽  
Author(s):  
Shigeru Nakano ◽  
Masahiro Fukaya ◽  
Sueharu Horinouchi

ABSTRACT Two-dimensional gel electrophoretic analysis of the membrane fraction of Acetobacter aceti revealed the presence of several proteins that were produced in response to acetic acid. A 60-kDa protein, named AatA, which was mostly induced by acetic acid, was prepared; aatA was cloned on the basis of its NH2-terminal amino acid sequence. AatA, consisting of 591 amino acids and containing ATP-binding cassette (ABC) sequences and ABC signature sequences, belonged to the ABC transporter superfamily. The aatA mutation with an insertion of the neomycin resistance gene within the aatA coding region showed reduced resistance to acetic acid, formic acid, propionic acid, and lactic acid, whereas the aatA mutation exerted no effects on resistance to various drugs, growth at low pH (adjusted with HCl), assimilation of acetic acid, or resistance to citric acid. Introduction of plasmid pABC101 containing aatA under the control of the Escherichia coli lac promoter into the aatA mutant restored the defect in acetic acid resistance. In addition, pABC101 conferred acetic acid resistance on E. coli. These findings showed that AatA was a putative ABC transporter conferring acetic acid resistance on the host cell. Southern blot analysis and subsequent nucleotide sequencing predicted the presence of aatA orthologues in a variety of acetic acid bacteria belonging to the genera Acetobacter and Gluconacetobacter. The fermentation with A. aceti containing aatA on a multicopy plasmid resulted in an increase in the final yield of acetic acid.


2007 ◽  
Vol 73 (6) ◽  
pp. 1809-1824 ◽  
Author(s):  
Nicholas Camu ◽  
Tom De Winter ◽  
Kristof Verbrugghe ◽  
Ilse Cleenwerck ◽  
Peter Vandamme ◽  
...  

ABSTRACT The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named“ Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).


2017 ◽  
Vol 5 (16) ◽  
Author(s):  
Julia U. Brandt ◽  
Frank Jakob ◽  
Andreas J. Geissler ◽  
Jürgen Behr ◽  
Rudi F. Vogel

ABSTRACT We report here the complete genome sequences of the acetic acid bacteria (AAB) Acetobacter aceti TMW 2.1153, A. persici TMW 2.1084, and Neoasaia chiangmaiensis NBRC 101099, which secrete biotechnologically relevant heteropolysaccharides (HePSs) into their environments. Upon genome sequencing of these AAB strains, the corresponding HePS biosynthesis pathways were identified.


2007 ◽  
Vol 57 (7) ◽  
pp. 1647-1652 ◽  
Author(s):  
Ilse Cleenwerck ◽  
Nicholas Camu ◽  
Katrien Engelbeen ◽  
Tom De Winter ◽  
Katrien Vandemeulebroecke ◽  
...  

Twenty-three acetic acid bacteria, isolated from traditional heap fermentations of Ghanaian cocoa beans, were subjected to a polyphasic taxonomic study. The isolates were catalase-positive, oxidase-negative, Gram-negative rods. They oxidized ethanol to acetic acid and were unable to produce 2-ketogluconic acid, 5-ketogluconic acid and 2,5-diketogluconic acid from glucose; therefore, they were tentatively identified as Acetobacter species. 16S rRNA gene sequencing and phylogenetic analysis confirmed their position in the genus Acetobacter, with Acetobacter syzygii and Acetobacter lovaniensis as their closest phylogenetic neighbours. (GTG)5-PCR fingerprinting grouped the strains in a cluster that did not contain any type strains of members of the genus Acetobacter. DNA–DNA hybridization with the type strains of all recognized Acetobacter species revealed DNA–DNA relatedness values below the species level. The DNA G+C contents of three selected strains were 56.9–57.3 mol%. The novel strains had phenotypic characteristics that enabled them to be differentiated from phylogenetically related Acetobacter species, i.e. they were motile, did not produce 2-ketogluconic acid or 5-ketogluconic acid from glucose, were catalase-positive and oxidase-negative, grew on yeast extract with 30 % glucose, grew on glycerol (although weakly) but not on maltose or methanol as carbon sources, and did not grow with ammonium as sole nitrogen source and ethanol as carbon source. Based on the genotypic and phenotypic data, the isolates represent a novel species of the genus Acetobacter for which the name Acetobacter ghanensis sp. nov. is proposed. The type strain is R-29337T (=430AT=LMG 23848T=DSM 18895T).


Author(s):  
Maria Denis Lozano Tovar ◽  
Geraldine Tibasosa ◽  
Carlos Mario González ◽  
Karen Ballestas Alvarez ◽  
Martha Del Pilar Lopez Hernandez ◽  
...  

Microbial activity involved in the cocoa beans fermentation process is essential to maintain and improve the organoleptic and nutritional qualities of chocolate; therefore, the aim of this investigation was to search and select microbial isolates with the potential to improve the quality of cocoa beans. Fermentation experimentswere conducted on farms located in Maceo (Antioquia), San Vicente de Chucurí (Santander), and Rivera and Algeciras (Huila), Colombia. Yeast, lactic acid bacteria (LAB), acetic acid bacteria (AAB), and mesophilic aerobic microorganisms were obtained from different fermentation batches. The growth of these microorganismswas tested in six treatments as follows: 50% cocoa pulp agar (CPA), high concentrations of glucose (10%), ethanol (5%), and acetic acid (7%), an acidic pH of 3.0, and a high temperature of 50oC for 24 h. The isolates with the highest growth were identified by 18S and 16S rRNA gene analysis, revealing a high diversity ofspecies associated with cocoa fermentation, including eight species of yeasts (Debaryomyces hansenii, Meyerozyma guillermondii, Wickerhanomyces anomalus, Pichia guillermondii, Pichia kudriavzevii, Trichosporon asahii, Candida parapsilosis, and Pichia manshurica), six species of LAB (Pediococcus acidilactici, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus farraginis, Lactobacillus rhamnosus, and Leuconostoc mesenteroides), four species of AAB (Gluconobacter japonicus, Acetobacter tropicalis, Acetobacter pasteurianus, and Acetobacter malorum/tropicalis), and three species of Bacillus spp. (Bacillusaryabhattai /megaterium, Bacillus subtilis, and Bacillus coagulans). In general, microbial populations increased in cocoa batches after 12 h of fermentation and decreased after 84-96 h. All the yeast isolates grew in 10% glucose and CPA, 85.7% in 5% ethanol, and 95% at a pH of 3.0. All the yeast isolates were affectedby 7% acetic acid and incubation at 50oC for 24 h. Eighty-five percent of the LAB grew in 10% glucose, 100% in 5% ethanol, 42.8% in CPA, 64% at a pH of 3.0, and 35.7% grew after being exposed to 50oC for 24 h; all were affected by 7% acetic acid. As for the AAB, 100% grew in 10% glucose, 71% in 7% ethanol, 100% grew in CPA, in 7% acetic acid, and at a pH of 3.0, while 100% were affected by incubation at 50oC. Three yeast isolates, W. anomalus, D. hansenii and M. guillermondii, three LAB isolates, P. acidilactici, L. brevis, and L. plantarum, and three AAB isolates, A. tropicalis, A. pasteurianus and G. japonicus, were selected as promising strains to be used in a microbial starter culture for cocoa bean fermentation to improve the organoleptic quality of cocoa.


2017 ◽  
Vol 9 (2) ◽  
pp. 50-54
Author(s):  
Murna Muzaifa ◽  
Yusya Abubakar ◽  
Faitzal Haris

Fermentation process is the most crucial step in the formation of the flavor and aroma of the cocoa bean. Cocoa bean fermentation triggers an array of chemical changes within the bean.These chemical changes are vital to the development of the complex and much-loved flavour known as “chocolate”. Fermentation involves a number of specific microorganisms that play a role during fermentation. The aim of this research was to analized microorganism growth profil of Aceh cacao during fermentation. Fermentation was conducted on 6 days with  different aerations (agitation every 24 and 48 hours). The result showed that growth profile of microorganism during fermentation relatively  had similar trend. Yeast dominated on the early fermentation, lactid bacteria reached the higest population on day 3 and acetic acid bacteria on day 4. Better quality of fermented cacao was resulted on every 48 hours of agitation  that reached 70,19% of full fermentation.


Author(s):  
Tiparat TIKAPUNYA

The purpose of this research is to investigate the quality-related physical, chemical, and microbiological changes in Thai cocoa beans during fermentation in 2 types of wooden containers. The results will compose a book of guidelines for good Thai cocoa fermentation in order to educate Thai farmers. Fresh Thai cocoa beans have a low pH value (5.0 - 5.5) compared to those from other countries in general (6.0 - 7.0). However, fermented temperature is able to reach 40 - 45 °C in 6 days, which is a main criteria for finishing cocoa fermentation. The color of fresh cocoa beans changes from white to brown within 2 days; after that, cocoa beans are mixed from the top to the bottom of the containers. Three groups of microorganism are evaluated with 3 different sampling points in wooden containers. The results reveal that yeast is grown quickly in 2 days on the top of containers, and then acetic acid bacteria and lactic acid bacteria are grown by the utilized yeast’s metabolites. These behaviors were found in both of the 2 wooden containers; however, a heap of cocoa beans (200 - 250 kgs) in a wooden box showed better quality of cocoa fermentation than a small volume (40 - 50 kgs) in a wooden tray. HIGHLIGHTS Understanding changes in Thai cocoa beans fermentation based on traditional method Two type of wooden containers applied for comparing all quality-related cocoa fermentation Proper cocoa beans fermentation process composed to a book of guideline for Thai Farmers GRAPHICAL ABSTRACT


2007 ◽  
Vol 74 (1) ◽  
pp. 86-98 ◽  
Author(s):  
Nicholas Camu ◽  
Ángel González ◽  
Tom De Winter ◽  
Ann Van Schoor ◽  
Katrien De Bruyne ◽  
...  

ABSTRACT The influence of turning and environmental contamination on six spontaneous cocoa bean heap fermentations performed in Ghana was studied through a multiphasic approach, encompassing both microbiological (culture-dependent and culture-independent techniques) and metabolite target analyses. A sensory analysis of chocolate made from the fermented, dried beans was performed as well. Only four clusters were found among the isolates of acetic acid bacteria (AAB) identified: Acetobacter pasteurianus, Acetobacter ghanensis, Acetobacter senegalensis, and a potential new Acetobacter lovaniensis-like species. Two main clusters were identified among the lactic acid bacteria (LAB) isolated, namely, Lactobacillus plantarum and Lactobacillus fermentum. No differences in biodiversity of LAB and AAB were seen for fermentations carried out at the farm and factory sites, indicating the cocoa pod surfaces and not the general environment as the main inoculum for spontaneous cocoa bean heap fermentation. Turning of the heaps enhanced aeration and increased the relative population size of AAB and the production of acetic acid. This in turn gave a more sour taste to chocolate made from these beans. Bitterness was reduced through losses of polyphenols and alkaloids upon fermentation and cocoa bean processing.


Sign in / Sign up

Export Citation Format

Share Document