scholarly journals Reverse Phenotyping after Whole-Exome Sequencing in Steroid-Resistant Nephrotic Syndrome

2019 ◽  
Vol 15 (1) ◽  
pp. 89-100 ◽  
Author(s):  
Samuela Landini ◽  
Benedetta Mazzinghi ◽  
Francesca Becherucci ◽  
Marco Allinovi ◽  
Aldesia Provenzano ◽  
...  

Background and objectivesNephrotic syndrome is a typical presentation of genetic podocytopathies but occasionally other genetic nephropathies can present as clinically indistinguishable phenocopies. We hypothesized that extended genetic testing followed by reverse phenotyping would increase the diagnostic rate for these patients.Design, setting, participants, & measurementsAll patients diagnosed with nephrotic syndrome and referred to our center between 2000 and 2018 were assessed in this retrospective study. When indicated, whole-exome sequencing and in silico filtering of 298 genes related to CKD were combined with subsequent reverse phenotyping in patients and families. Pathogenic variants were defined according to current guidelines of the American College of Medical Genetics.ResultsA total of 111 patients (64 steroid-resistant and 47 steroid-sensitive) were included in the study. Not a single pathogenic variant was detected in the steroid-sensitive group. Overall, 30% (19 out of 64) of steroid-resistant patients had pathogenic variants in podocytopathy genes, whereas a substantial number of variants were identified in other genes, not commonly associated with isolated nephrotic syndrome. Reverse phenotyping, on the basis of a personalized diagnostic workflow, permitted to identify previously unrecognized clinical signs of an unexpected underlying genetic nephropathy in a further 28% (18 out of 64) of patients. These patients showed similar multidrug resistance, but different long-term outcome, when compared with genetic podocytopathies.ConclusionsReverse phenotyping increased the diagnostic accuracy in patients referred with the diagnosis of steroid-resistant nephrotic syndrome.

Nephron ◽  
2021 ◽  
pp. 1-6
Author(s):  
Suramath Isaranuwatchai ◽  
Ankanee Chanakul ◽  
Chupong Ittiwut ◽  
Chalurmpon Srichomthong ◽  
Vorasuk Shotelersuk ◽  
...  

Chronic kidney disease of unknown etiology (CKDu) has been a problem in renal practice as indefinite diagnosis may lead to inappropriate management. Here, we report a 54-year-old father diagnosed with CKDu at 33 years old and his 8-year-old son with steroid-resistant nephrotic syndrome. Using whole-exome sequencing, both were found to be heterozygous for c.737G>A (p.Arg246Gln) in LMX1B. The diagnosis of LMX1B-associated nephropathy has led to changes in the treatment plan with appropriate genetic counseling. The previously reported cases with this particular mutation were also reviewed. Most children with LMX1B-associated nephropathy had nonnephrotic proteinuria with normal renal function. Interestingly, our pediatric case presented with steroid-resistant nephrotic syndrome at 8 years old and progressed to ESRD requiring peritoneal dialysis at the age of 15 years. Our report emphasized the need of genetic testing in CKDu for definite diagnosis leading to precise management.


2017 ◽  
Vol 13 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Jillian K. Warejko ◽  
Weizhen Tan ◽  
Ankana Daga ◽  
David Schapiro ◽  
Jennifer A. Lawson ◽  
...  

Background and objectivesSteroid-resistant nephrotic syndrome overwhelmingly progresses to ESRD. More than 30 monogenic genes have been identified to cause steroid-resistant nephrotic syndrome. We previously detected causative mutations using targeted panel sequencing in 30% of patients with steroid-resistant nephrotic syndrome. Panel sequencing has a number of limitations when compared with whole exome sequencing. We employed whole exome sequencing to detect monogenic causes of steroid-resistant nephrotic syndrome in an international cohort of 300 families.Design, setting, participants, & measurementsThree hundred thirty-five individuals with steroid-resistant nephrotic syndrome from 300 families were recruited from April of 1998 to June of 2016. Age of onset was restricted to <25 years of age. Exome data were evaluated for 33 known monogenic steroid-resistant nephrotic syndrome genes.ResultsIn 74 of 300 families (25%), we identified a causative mutation in one of 20 genes known to cause steroid-resistant nephrotic syndrome. In 11 families (3.7%), we detected a mutation in a gene that causes a phenocopy of steroid-resistant nephrotic syndrome. This is consistent with our previously published identification of mutations using a panel approach. We detected a causative mutation in a known steroid-resistant nephrotic syndrome gene in 38% of consanguineous families and in 13% of nonconsanguineous families, and 48% of children with congenital nephrotic syndrome. A total of 68 different mutations were detected in 20 of 33 steroid-resistant nephrotic syndrome genes. Fifteen of these mutations were novel. NPHS1, PLCE1, NPHS2, and SMARCAL1 were the most common genes in which we detected a mutation. In another 28% of families, we detected mutations in one or more candidate genes for steroid-resistant nephrotic syndrome.ConclusionsWhole exome sequencing is a sensitive approach toward diagnosis of monogenic causes of steroid-resistant nephrotic syndrome. A molecular genetic diagnosis of steroid-resistant nephrotic syndrome may have important consequences for the management of treatment and kidney transplantation in steroid-resistant nephrotic syndrome.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ling Hou ◽  
Lu Yin ◽  
Yubin Wu ◽  
Chengguang Zhao ◽  
Yue Du

A structural abnormality or dysfunction of podocytes is the major cause of nephrotic syndrome (NS). The TBC1D8B protein interacts with nephrin, a podocyte slit diaphragm protein, regulates vesicle transport, and functions in the pathogenesis of NS. We report a novel potentially pathogenic variant in the TBC1D8B gene in a 6-month-old boy with NS. A 6-month-old boy was admitted to the hospital because of edema and fever. Our systematic examination led to a diagnosis of NS. Because of the early age of onset, we performed trio whole-exome sequencing of him and his parents. The results showed a new potentially pathogenic variant in the TBC1D8B gene on the X chromosome, c.2717A&gt;G (p.His906Arg). After routine glucocorticoid therapy, his urine protein turned negative, indicating steroid-sensitive NS. The new TBC1D8B variant identified here, c.2717A&gt;G (p.His906Arg), may be associated with early-onset NS in children. Although NS due to pathogenic variants in this gene is more commonly steroid-resistant, our patient had steroid-sensitive NS.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohd Fareed ◽  
Vikas Makkar ◽  
Ravi Angral ◽  
Mohammad Afzal ◽  
Gurdarshan Singh

AbstractNephrotic syndrome arising from monogenic mutations differs substantially from acquired ones in their clinical prognosis, progression, and disease management. Several pathogenic mutations in the COQ8B gene are known to cause nephrotic syndrome. Here, we used the whole-exome sequencing (WES) technology to decipher the genetic cause of nephrotic syndrome (CKD stage-V) in a large affected consanguineous family. Our study exposed a novel missense homozygous mutation NC_000019.9:g.41209497C > T; NM_024876.4:c.748G > A; NP_079152.3:p.(Asp250Asn) in the 9th exon of the COQ8B gene, co-segregated well with the disease phenotype. Our study provides the first insight into this homozygous condition, which has not been previously reported in 1000Genome, ClinVar, ExAC, and genomAD databases. In addition to the pathogenic COQ8B variant, the WES data also revealed some novel and recurrent mutations in the GLA, NUP107, COQ2, COQ6, COQ7 and COQ9 genes. The novel variants observed in this study have been submitted to the ClinVar database and are publicly available online with the accessions: SCV001451361.1, SCV001451725.1 and SCV001451724.1. Based on the patient's clinical history and genomic data with in silico validation, we conclude that pathogenic mutation in the COQ8B gene was causing kidney failure in an autosomal recessive manner. We recommend WES technology for genetic testing in such a consanguineous family to not only prevent the future generation, but early detection can help in disease management and therapeutic interventions.


Author(s):  
J Fonseca ◽  
C Melo ◽  
C Ferreira ◽  
M Sampaio ◽  
R Sousa ◽  
...  

AbstractEarly infantile epileptic encephalopathy-64 (EIEE 64), also called RHOBTB2-related developmental and epileptic encephalopathy (DEE), is caused by heterozygous pathogenic variants (EIEE 64; MIM#618004) in the Rho-related BTB domain-containing protein 2 (RHOBTB2) gene. To date, only 13 cases with RHOBTB2-related DEE have been reported. We add to the literature the 14th case of EIEE 64, identified by whole exome sequencing, caused by a heterozygous pathogenic variant in RHOBTB2 (c.1531C > T), p.Arg511Trp. This additional case supports the main features of RHOBTB2-related DEE: infantile-onset seizures, severe intellectual disability, impaired motor functions, postnatal microcephaly, recurrent status epilepticus, and hemiparesis after seizures.


Sign in / Sign up

Export Citation Format

Share Document