epilepsy gene
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Jo Sourbron ◽  
Katrien Jansen ◽  
Davide Mei ◽  
Trine Bjørg Hammer ◽  
Rikke S. Møller ◽  
...  

AbstractWe report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.


2021 ◽  
Author(s):  
Ramona Cordani ◽  
Livia Pisciotta ◽  
Maria Margherita Mancardi ◽  
Michela Stagnaro ◽  
Giulia Prato ◽  
...  

AbstractAlternating Hemiplegia of Childhood (AHC) is a rare neurological disease characterized by early-onset recurrent paroxysmal events and persistent neurological deficits. TBC1D24 gene variants have been associated with a phenotypic spectrum having epilepsy as the main clinical manifestation. Herein, we report the case of a child affected by developmental delay, polymorphic seizures, and nonepileptic episodes characterized by hemiplegia or bilateral plegia, pallor, hypotonia, and dystonic postures without loss of consciousness that resolved with sleep. Noteworthy, the patient fulfills all the diagnostic criteria for AHC. An epilepsy gene panel revealed a novel TBC1D24 mutation. This variant may be considered a PM5, according to the American College of Medical Genetics and Genomics guidelines. TBC1D24 gene variants are associated with various clinical features, and increasing data confirms the association with permanent and paroxysmal movement disorders. Our report suggests that the TBC1D24 molecular analysis could be considered in the diagnostic workup of AHC patients.


Author(s):  
Adam L. Numis ◽  
Gilberto da Gente ◽  
Elliott H. Sherr ◽  
Hannah C. Glass

Abstract Background The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. Methods Case–control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. Results Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. Conclusions In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. Impact We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.


2021 ◽  
pp. jmedgenet-2020-107511
Author(s):  
Marion Aubert Mucca ◽  
Olivier Patat ◽  
Sandra Whalen ◽  
Lionel Arnaud ◽  
Giulia Barcia ◽  
...  

De novo missense variants in KCNH1 encoding Kv10.1 are responsible for two clinically recognisable phenotypes: Temple-Baraitser syndrome (TBS) and Zimmermann-Laband syndrome (ZLS). The clinical overlap between these two syndromes suggests that they belong to a spectrum of KCNH1-related encephalopathies. Affected patients have severe intellectual disability (ID) with or without epilepsy, hypertrichosis and distinctive features such as gingival hyperplasia and nail hypoplasia/aplasia (present in 20/23 reported cases).We report a series of seven patients with ID and de novo pathogenic KCNH1 variants identified by whole-exome sequencing or an epilepsy gene panel in whom the diagnosis of TBS/ZLS had not been first considered. Four of these variants, p.(Thr294Met), p.(Ala492Asp), p.(Thr493Asn) and p.(Gly496Arg), were located in the transmembrane domains S3 and S6 of Kv10.1 and one, p.(Arg693Gln), in its C-terminal cyclic nucleotide-binding homology domain (CNBHD). Clinical reappraisal by the referring clinical geneticists confirmed the absence of the distinctive gingival and nail features of TBS/ZLS.Our study expands the phenotypical spectrum of KCNH1-related encephalopathies to individuals with an attenuated extraneurological phenotype preventing a clinical diagnosis of TBS or ZLS. This subtype may be related to recurrent substitutions of the Gly496, suggesting a genotype–phenotype correlation and, possibly, to variants in the CNBHD domain.


2021 ◽  
Author(s):  
Astrid J Rodriguez-Acevedo ◽  
Louisa G Gordon ◽  
Nicola Waddell ◽  
Georgina Hollway ◽  
Lata Vadlamudi

Evaluating genes involved in the pharmacodynamics and pharmacokinetics of epilepsy drugs is critical to better understand pharmacoresistant epilepsy. We reviewed the pharmacogenetics literature on six antiseizure medicines (carbamazepine, perampanel, lamotrigine, levetiracetam, sodium valproate and zonisamide) and compared the genes found with those present on epilepsy gene panels using a functional annotation pathway analysis. Little overlap was found between the two gene lists; pharmacogenetic genes are mainly involved in detoxification processes, while epilepsy panel genes are involved in cell signaling and gene expression. Our work provides support for a specific pharmacoresistant epilepsy gene panel to assist antiseizure medicine selection, enabling personalized approaches to treatment. Future efforts will seek to include this panel in genomic analyses of pharmacoresistant patients, to determine clinical utility and patient treatment responses.


2021 ◽  
Vol 118 (3) ◽  
pp. e2022580118
Author(s):  
Yuko Fukata ◽  
Xiumin Chen ◽  
Satomi Chiken ◽  
Yoko Hirano ◽  
Atsushi Yamagata ◽  
...  

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1–ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4–Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22–MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1–ADAM22–MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Sign in / Sign up

Export Citation Format

Share Document