Evolving Demographics of Nephrology Research Workforce in the United States

2021 ◽  
Vol 16 (9) ◽  
pp. 1312-1314
Author(s):  
Susan E. Quaggin ◽  
Benjamin D. Humphreys
2021 ◽  
Vol 18 (03) ◽  
Author(s):  
Nuri Jeong ◽  
Esra Sefik ◽  
Fu Shiu ◽  
Thiago Arzua

As the global scientific and engineering powerhouse, the United States has pioneered numerous inventions such as the telephone, alternating current, radio broadcasting, and controlled nuclear chain reactions. Some may be surprised to find that these were products of immigrants, who pushed the boundaries of science and technology. In the past years, however, the U.S. has been losing its competitive advantage in the global labor market. A key reason for this is that the U.S. is failing to attract and retain international graduate students in STEM fields. Historically, a large portion of these students stayed after graduation and drove innovations that fueled the nation’s trillion-dollar economy. That trend is changing, with many now opting to go elsewhere for their graduate education. Critical flaws in U.S. visa and immigration policy and a lack of federal funding mechanisms for international graduate students are exacerbating this trend. As a result, the U.S. is losing promising junior scientists to other countries with more aggressive foreign recruitment strategies. To counter this trend, we outline in detail the areas with room for growth and propose policy solutions to be implemented by the federal government. These solutions will help the U.S. excel in STEM research workforce diversity, equality, cultural competence, and ultimately, retain its global leadership.


2015 ◽  
Vol 26 (8) ◽  
pp. 1413-1415 ◽  
Author(s):  
Jessica K. Polka ◽  
Kristin A. Krukenberg ◽  
Gary S. McDowell

There is a common misconception that the United States is suffering from a “STEM shortage,” a dearth of graduates with scientific, technological, engineering, and mathematical backgrounds. In biomedical science, however, we are likely suffering from the opposite problem and could certainly better tailor training to actual career outcomes. At the Future of Research Symposium, various workshops identified this as a key issue in a pipeline traditionally geared toward academia. Proposals for reform all ultimately come up against the same problem: there is a shocking lack of data at institutional and national levels on the size, shape, and successful careers of participants in the research workforce. In this paper, we call for improved institutional reporting of the number of graduate students and postdocs and their training and career outcomes.


Author(s):  
A. Hakam ◽  
J.T. Gau ◽  
M.L. Grove ◽  
B.A. Evans ◽  
M. Shuman ◽  
...  

Prostate adenocarcinoma is the most common malignant tumor of men in the United States and is the third leading cause of death in men. Despite attempts at early detection, there will be 244,000 new cases and 44,000 deaths from the disease in the United States in 1995. Therapeutic progress against this disease is hindered by an incomplete understanding of prostate epithelial cell biology, the availability of human tissues for in vitro experimentation, slow dissemination of information between prostate cancer research teams and the increasing pressure to “ stretch” research dollars at the same time staff reductions are occurring.To meet these challenges, we have used the correlative microscopy (CM) and client/server (C/S) computing to increase productivity while decreasing costs. Critical elements of our program are as follows:1) Establishing the Western Pennsylvania Genitourinary (GU) Tissue Bank which includes >100 prostates from patients with prostate adenocarcinoma as well as >20 normal prostates from transplant organ donors.


Author(s):  
Vinod K. Berry ◽  
Xiao Zhang

In recent years it became apparent that we needed to improve productivity and efficiency in the Microscopy Laboratories in GE Plastics. It was realized that digital image acquisition, archiving, processing, analysis, and transmission over a network would be the best way to achieve this goal. Also, the capabilities of quantitative image analysis, image transmission etc. available with this approach would help us to increase our efficiency. Although the advantages of digital image acquisition, processing, archiving, etc. have been described and are being practiced in many SEM, laboratories, they have not been generally applied in microscopy laboratories (TEM, Optical, SEM and others) and impact on increased productivity has not been yet exploited as well.In order to attain our objective we have acquired a SEMICAPS imaging workstation for each of the GE Plastic sites in the United States. We have integrated the workstation with the microscopes and their peripherals as shown in Figure 1.


2001 ◽  
Vol 15 (01) ◽  
pp. 53-87 ◽  
Author(s):  
Andrew Rehfeld

Every ten years, the United States “constructs” itself politically. On a decennial basis, U.S. Congressional districts are quite literally drawn, physically constructing political representation in the House of Representatives on the basis of where one lives. Why does the United States do it this way? What justifies domicile as the sole criteria of constituency construction? These are the questions raised in this article. Contrary to many contemporary understandings of representation at the founding, I argue that there were no principled reasons for using domicile as the method of organizing for political representation. Even in 1787, the Congressional district was expected to be far too large to map onto existing communities of interest. Instead, territory should be understood as forming a habit of mind for the founders, even while it was necessary to achieve other democratic aims of representative government.


Sign in / Sign up

Export Citation Format

Share Document