scholarly journals THE EFFECT OF CURCUMA XANTHORRHIZA - ETHANOL EXTRACT TO BIOFILM FORMATION OF STREPTOCOCCUS MUTANS AND AGGREGATIBACTER ACTINOMYCETEMCOMITANS (DENTAL BIOFILM RESEARCH: IN VITRO STUDY)

Author(s):  
Fidhianissa . . ◽  
Hedijanti Joenoes ◽  
Ariadna A Djais

Objective: This in vitro study aimed to analyze the mass ratio of single- and dual-species Streptococcus mutans and Aggregatibacteractinomycetemcomitans biofilm after exposure to Curcuma xanthorrhiza ethanol extract (Xan).Methods: A bacterial suspension in brain heart infusion medium, enriched with 0.2% sucrose, was exposed to the Xan, incubated for 18 hrs, andanalyzed using a crystal violet assay.Results: This research concluded that the minimum inhibitory concentration of ethanol-temulawak extract against S. mutans was 5%, while theminimum bactericidal concentration was 15%.Conclusions: Xan prevented biofilm formation of single-species S. mutans and dual-species S. mutans and A. actinomycetemcomitans more effectivelythan it did single-species A. actinomycetemcomitans.

Author(s):  
Royan Diana ◽  
Hedijanti Joenoes ◽  
Ariadna A Djais

Objective: This study aimed to compare the effect of Curcuma xanthrorrhiza ethanol extract to the viability of Streptococcus mutans and Aggregatibacter  actinomycetemcomitans using single- and dual-species biofilm at different phases of formation.Methods: Biofilm models were incubated for 4, 12, and 24 hrs, then exposed to the extract at a concentration of 0.525%.Results: The viability of the single-species S. mutans biofilm was low (p<0.05), and no significant difference (p>0.05) was found between singlespeciesA. actinomycetemcomitans and dual-species biofilm.Conclusions: Curcuma xanthorrhiza ethanol extract is more effective for decreasing the viability of single-species S. mutans biofilm.


2020 ◽  
Vol 29 (Sup4) ◽  
pp. S25-S35
Author(s):  
Pornanong Aramwit ◽  
Supamas Napavichayanum ◽  
Prompong Pienpinijtham ◽  
Yousef Rasmi ◽  
Nipaporn Bang

Objective: To investigate the potential of sericin extracted by different methods to inhibit biofilm formation (prevention) and disrupt already formed biofilm (treatment). Method: In this in vitro study, sericin was extracted by heat, acid, alkali and urea. Streptococcus mutans bacteria were cultivated in the presence of various concentrations of sericin to evaluate antibiofilm formation using cell density assay (inhibition effect before biofilm formed). Conversely, various concentrations of sericin were added to a biofilm already formed by Streptococcus mutans bacteria, and the viability of bacteria assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (disruption effects after biofilm formed). Structures of extracted sericin were evaluated using circular dichroism and Fourier-transform infrared spectrometer. Results: The urea-extracted sericin at all concentrations (12.5mg/ml, 25mg/ml, 50mg/ml and 100mg/ml) showed the highest potential antibiofilm activity in terms of both inhibition and disruption effects, compared with sericin extracted by heat, acid or alkali. The heat-extracted and acid-extracted sericin were found to reduce the biofilm formation dose-dependently, while the alkali-extracted sericin did not show either inhibition or disruption effect on the bacterial biofilm. The urea-extracted sericin also killed the bacteria residing within the biofilm, possibly due to its modified structure which may destabilise the bacterial cell wall, leading to membrane disintegration and, finally, cell death. Conclusion: Our results demostrated the antibiofilm activity of sericin. This could form the basis of further research on the mechanism and application of sericin as a novel antibiofilm agent.


2021 ◽  
Vol 26 (6) ◽  
Author(s):  
Murilo Fernando Neuppmann FERES ◽  
Fernanda VICIONI-MARQUES ◽  
Fábio Lourenço ROMANO ◽  
Marina Guimarães ROSCOE ◽  
Vinícius Matsuzaki de SOUZA ◽  
...  

ABSTRACT Introduction: Although self-ligating brackets presumably provide better hygiene conditions, no consensus has been reached so far. Objective: Therefore, the objective of this study was to evaluate, in an in vitro experimental design, the adherence of Streptococcus mutans (SM) in self-ligating and conventional brackets of different manufacturers and ligature types. Methods: Four commercial brands of maxillary premolar metal brackets were tested (Abzil®; Morelli®; 3M Unitek®; and GAC®). Each one was subdivided into three groups, which varied according to the type of ligature and bracket model (metallic, elastic, and self-ligating), totalizing twelve groups, composed of six brackets each. Previously sterilized brackets were initially immersed in saliva for one hour, and subsequently washed and added in a bacterial suspension, maintained in aerobiosis for 72 hours. The adhered bacteria were then separated and quantified by colony forming units (CFU/mL) counting after 48 hours of growth. The groups were compared by Kruskal-Wallis and Dunn post-hoc tests (p< 0.05). Results: Regardless of the commercial brand, self-ligating brackets had significantly less CFU/mL. However, according to comparisons performed within each commercial brand, only Abzil® self-ligating brackets had significantly lower biofilm adhesion. Among all of the self-ligating models, GAC® brackets presented the highest bacterial adhesion rate. Conclusions: Self-ligating brackets are likely to present lower rates of biofilm adhesion. Particularly, Abzil® and GAC® self-ligating brackets are less likely to accumulate biofilm. Although such results are derived from an in vitro study, practitioners might acknowledge findings concerning bacterial adhesion as one of the relevant features to be considered during bracket selection.


2017 ◽  
Vol 17 ◽  
pp. 56-60 ◽  
Author(s):  
Leili Beytollahi ◽  
Maryam Pourhajibagher ◽  
Nasim Chiniforush ◽  
Roghayeh Ghorbanzadeh ◽  
Reza Raoofian ◽  
...  

Biofouling ◽  
2021 ◽  
pp. 1-9
Author(s):  
Arval Viji Elango ◽  
Sahana Vasudevan ◽  
Karthi Shanmugam ◽  
Adline Princy Solomon ◽  
Prasanna Neelakantan

Sign in / Sign up

Export Citation Format

Share Document