scholarly journals NATURAL ISOTHIOCYANATE ANTI-MALARIA: MOLECULAR DOCKING, PHYSICOCHEMICAL, ADME, TOXICITY AND SYNTHETIC ACCESSIBILITY STUDY OF EUGENOL AND CINNAMALDEHYDE

Author(s):  
LUCY ARIANIE ◽  
WIDODO ◽  
ELVINA DHIAUL IFTITAH ◽  
WARSITO

Objective: This study aims to evaluate novel compounds of isothiocyanate (ITC) based on eugenol and cinnamaldehyde derivatives as the drug candidate of Plasmodium falciparum anti-malaria using in silico method, physicochemical, pharmacokinetics, toxicity, and synthetic accessibility prediction. This present study also describes molecular docking and pharmacoinformatics of natural ITC in Moringa oleifera leaves. Methods: A series of novel ITC compounds (3, 5, and 6) were designed and analyzed with a series of natural ITC compounds (7, 8, 9, 10) for P. falciparum anti-malaria. This research is descriptive qualitative and uses the reverse molecular docking method, proving the biological activity of compounds theoretically using software and database information. Results: Molecular docking study showed that compound 6 exhibits binding affinity (-5.3 Kcal/mol) on Van der Waals interaction with the residual active site (His159, Cys25) of cysteine protease. All designed ITC compounds are obeyed the Lipinski and Veber Rule, have a well-brain penetrant character and have a medium risk for mutagenic, tumorigenic, and reproductive prediction. They are also in the simple rate of synthetic accessibility (SA) estimation. In regards to natural ITCs, they all have better assay characteristics except the SA. Conclusion: Molecular docking, physicochemical, pharmacokinetic, and toxicity studies show that methyl eugenol isothiocyanate and cinnamaldehyde isothiocyanate are promising anti-malaria compounds. Substituents of hydroxy, acetate and tetrahydropyran groups in the building block ring are suggested for better in silico profiles enhancement.

2021 ◽  
Vol 3 (1) ◽  
pp. 124-130
Author(s):  
Nabila Shafa Athharani ◽  
Nugraha Sutadipura ◽  
Yuli Susanti

Penemuan berbagai senyawa obat baru dari berbagai proses penelitian yang semakin memperjelas peran penting studi komputasi sebagai dasar awal untuk menemukan sumber bahan baku obat baik dari alam maupun sintetis. Infeksi nosokomial dapat disebabkan oleh bakteri, virus atau patogen lain di rumah sakit, dan ditularkan melalui peralatan di rumah sakit. Salah satu bakteri yang paling sering menyebabkan infeksi adalah Acinetobacter baumanii bakteri tersebut dapat membangun resistensi dalam tubuh. Metode penelitian ini dilakukan secara in silico dengan metode molecular docking dengan melihat penambatan molekul senyawa yang dimilikinya. Hasil penelitian menunjukkan bahwa senyawa yang diuji terhadap target reseptor yaitu Acinetobacter baumanii memiliki kemampuan sebagai antibakteri, terlihat dari ikatan afinitas yang diperoleh dari sekitar -7,7 kkal/mol hingga -8,1 kkal/mol. Kesimpulannya, kunyit dapat digunakan sebagai kandidat untuk mencegah Acinetobacter baumanii menjadi resisten. Molecular Docking Study of Curcuma Longa Compounds on Bacteria Resistant Carbapenem Acinetobacter Baumanii with in Silico MethodThe discovery of various new medicinal compounds from various research processes that further clarify the important role of computational studies as the initial basis for finding sources of medicinal raw materials both from natural and synthetic. Nosocomial infections can be caused by bacteria, viruses or other pathogens in the hospital and transmitted through equipment in the hospital. One of the bacteria that most often causes infection is Acinetobacter baumanii where these bacteria can build up resistance in the body. Method  of  this research is carried out in silico with the molecular docking method by looking at the docking of its compound molecules. The results showed that of the compounds tested against the receptor target, Acinetobacter Baumanii, had the ability as antibacterial, seen from the affinity bonds obtained from around -7.7 kcal/mol to -8.1 kcal/mol.  Conclusion is turmeric can be used as a candidate to prevent Acinetobacter baumanii from becoming resistance.


Author(s):  
Mohammed Hadi Al–Douh ◽  
Elham Abdalrahem Bin Selim ◽  
Hassan Hadi Abdallah ◽  
Hewa Y. Abdullah ◽  
Aisha Khalid Al–Bakri ◽  
...  

In this study, the computerized molecular docking method was used to investigate the interactions of five nitro diazo dye derivatives 1-5 with COVID-19, CLpro, RAF and PLpro as very important viral proteins to target the coronavirus SARS-CoV-2. Among the used diazo dyes, compound 5 showed the highest binding free energies and the lowest inhibition constants Ki with all studied proteins, and it exhibits a large effect to inhibit the activities of the RAF and COVID-19. Therefore, compound 5 may be useful as an antiviral candidate that worth more trials for COVID-19 disease. The binding sites of compound 5 with the tested viral proteins were evaluated.


2015 ◽  
Author(s):  
Manik Ghosh ◽  
Kamal Kant ◽  
Anoop Kumar ◽  
Padma Behera ◽  
Naresh Rangra ◽  
...  

2020 ◽  
Vol 32 (6) ◽  
pp. 1482-1490
Author(s):  
Manju Mathew ◽  
Raja Chinnamanayakar ◽  
Ezhilarasi Muthuvel Ramanathan

A series of 1-(5-(5-(4-chlorophenyl)furan-2-yl)-4,5-dihyropyrazol-1-yl ethanone (5a-h) was synthesized through E-(3-(5-(4-chloro-phenyl)furan-2-yl)-1-phenylprop-2-en-1-one (3a-h) with hydrazine monohydrate and sodium acetate. Totally, eight compounds were synthesized and their structures were elucidated by infrared, 1H & 13C NMR, elemental analysis, antimicrobial studies, in silico molecular docking studies and also in silico ADME prediction. Antimicrobial studies of the synthesized compounds showed good to moderate activity against the all the stains compared with standard drugs. in silico Molecular docking study was carried out using bacterial protein and BC protein. Synthesized compounds (5a-h) showed good docking score compared with ciprofloxacin. Antimicrobial study was carried out for 4-chlorophenyl furfuran pyrazole derivatives (5a-h). The results of assessment of toxicities, drug likeness and drug score profiles of compounds (5a-j) are promising


Heliyon ◽  
2020 ◽  
Vol 6 (8) ◽  
pp. e04514
Author(s):  
Rania Kasmi ◽  
Elghalia Hadaji ◽  
Oussama Chedadi ◽  
Abdellah El Aissouq ◽  
Mohammed Bouachrine ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document