scholarly journals FORMULATION DEVELOPMENT AND EVALUATION OF FAST DISINTEGRATING TABLETS OF CINITAPRIDE HYDROGEN TARTARATE BY USING DIRECT COMPRESSION TECHNIQUE

Author(s):  
Krishna Mohan Chinnala ◽  
Sirish Vodithala

Objective: In the present study, efforts were taken to develop fast disintegrating tablets of Cinitapride hydrogen tartrate, is a gastro-prokinetic agent and antiulcer agent with an objective to achieve rapid disintegration, and further improving the bioavailability of the drug. Also, to resolve the swallowing problems (Dysphasia) in pediatric, geriatric patients by rapid disintegration in saliva and improve the patient compliance.Methods: Fast disintegrating tablets were prepared by direct compression method using superdisintegrants like crospovidone (CP), croscarmellose sodium (CCS), sodium starch glycolate (SSG) and combination of super-disintegrants in different concentrations. The prepared formulations were evaluated for the pre-compression parameters like bulk density, tapped density, Carr’s compressibility, Hausner’s ratio and angle of repose. The prepared batches of fast disintegrating tablets of Cinitapride hydrogen tartarate were evaluated for hardness, weight variation, thickness, friability, drug content, disintegration time, wetting time, water absorption ratio, and in vitro dissolution profile.Results: Bulk density and tapped density were found in the range of 0.412–0.432 g/cc and 0.507–0.528 g/cc respectively. In all formulations, tablet weight and thickness were within mean±9.5% and mean±5% respectively. Wetting time values lie between 19.76 to 39.53 sec. Water absorption ratio ranged from 57.30 to 78.82 %. The in vitro disintegration time for all the 12 formulations varied from 17.43 to 38.61 seconds. Formulation F8 which contained crosspovidone have recorded drug release 96.94±0.47% at the end of 30 min.Conclusion: The formulation containing crospovidone (F8) showed better performance in terms of disintegration time and drug release when compared to other formulations.

Author(s):  
Suresh Kulkarni ◽  
Ranjit P. ◽  
Nikunj Patel ◽  
Someshwara B. ◽  
Ramesh B. ◽  
...  

The present investigation deals with the formulation of fast disintegrating tablets of Meloxicam that disintegrate in the oral cavity upon contact with saliva and there by improve therapeutic efficacy. Meloxicam is a newer selective COX-1 inhibitor. The tablets were prepared by wet granulation procedure. The influence of superdisintegrants, crosspovidone, croscaremellose sodium on disintegration time, wetting time and water absorption ratio were studied. Tablets were evaluated for weight and thickness variation, disintegration time, drug content, in vitro dissolution, wetting time and water absorption ratio. The in vitro disintegration time of the best fast disintegrating tablets was found to be 18 sec. Tablets containing crospovidone exhibit quick disintegration time than tablets containing croscaremellose sodium. The fast disintegrating tablets of Meloxicam with shorter disintegration time, acceptable taste and sufficient hardness could be prepared using crospovidone and other excipients at optimum concentration.


Author(s):  
Mohammed Sarfaraz ◽  
Surendra Kumar Sharma

ABSTRACTObjective: The main objective of this research was to formulate Fast disintegrating tablets of Flurbiprofen incorporating superdisintegrants, isolated from natural sources like Plantago ovata (PO) seeds, Lepidium sativum (LS) seeds and agar-agar.Methods: Superdisintegrants were isolated from their natural sources using reported methods. Swelling index and hydration capacity was determined for the natural superdisintegrants to know their disintegration capacity. The tablet formulations were designed using isolated natural superdisintegrants. The powder blends were evaluated for pre-compressional parameters like angle of repose, bulk density, tapped density, carr’s index, and hausner’s ratio. Fast disintegrating tablets were prepared by direct compression method. The compressed tablets were characterized for post compression parameters.Results: All formulations had hardness, friability, weight variation and drug content within the pharmacopoeial limits. The wetting time was 84 to 254 sec, in vitro disintegration time was between 59.2 to 221 sec, and in-vitro drug release was as low as 11.80% (LS1) to a maximum of 98.99% (PO4) after 4 min of study. Among all, optimized formulation was PO4, as it showed good wetting time (84 sec), fastest disintegration time (59.2 sec), dispersion time (135 sec) and drug release of 98.99.% within 4 min.Conclusion: Flurbiprofen FDT’s were successfully developed using isolated natural disintegrants. The natural disintegrants isolated showed promising results and can prove as effective alternative for synthetic disintegrants.


Author(s):  
Priyanka Choudhury ◽  
Pulak Deb ◽  
Suvakanta Dash

ABSTRACTObjective: The aim of the present study is to formulate and optimize bilayer sublingual tablets of Levocetrizine hydrochloride and Ambroxolhydrochloride using a 2 response surface methodology employing design expert-10.0. Sodium starch glycolate and Camphor were selected asindependent variables while disintegration time (sec) and water absorption ratio (%) were considered as responses. 3Methods: The bilayer sublingual tablets were prepared by direct compression and evaluated for various evaluation parameters including hardness,thickness, friability, drug content uniformity, wetting time, water absorption ratio and disintegration time. The prepared optimized bilayer sublingualtablets of Levocetrizine hydrochloride and Ambroxol hydrochloride having above 2 responses-disintegration time (sec) and water absorption ratio.Results: The optimized batch having concentration of sodium starch glycolate and camphor was found within the standard limit of parametersdisintegrationtime (sec) and waterabsorption ratio(%) as 61 sec and 69.67%.Conclusion: The direct compression method in this study is relatively simple and safe and a stable, effective and pleasant tasting bilayer sublingualtablet, which has a good balance over disintegration time and water absorption ratio, was formulated.Keywords: Levocetirizine hydrochloride, Ambroxol hydrochloride, Croscarmellose sodium, Sodium starch glycolate, Camphor, Statistical optimization.


Author(s):  
NIRMALA DASARI ◽  
VIDYAVATHI MARUVAJALA

Objective: The objective of the present work was to prepare an optimized, fast dissolving tablet (FDT) of Pitavastatin to increase its dissolution by applying 32full factorial design. Methods: Nine formulations (PF1 to PF9) with all possible combinations according to 32full factorial design by selecting two factors i.e. concentration of super disintegrant, Indion414 (5-15%) (A) and sublimating agent, camphor (40-60%) (B) as independent variables at three levels of-1, 0 and 1. The effect of these two variables on three dependent parameters, water absorption ratio (Y1), disintegration time (Y2) and in vitro drug release (Y3) was studied. All the powder blends were evaluated for precompression parameters, and the tablets were prepared by direct compression method which were further evaluated for post-compression parameters. The effect of change in concentration of two selected factors on dependent parameters was studied through 3D surface response plots and polynomial equations using Design expert software version11. Optimized formula was obtained by desirability and overlay plots for which compatibility stability was assessed. Results: Precompression and post-compression parameters were satisfactorily within acceptable limits. Optimized formulation was prepared to prove the validity of the evolved mathematical model, which contained 6.75 mg of indion414(0.9) and 54 mg of camphor(0.9) with a disintegration time of 21 sec., water absorption ratio of 113 and 93% of drug release within 12 min. The compatibility between drugs and excipients was proved. The dissolution profiles of optimized formulation and commercially available conventional film-coated tablets of Pitavastatin were compared. Conclusion: The optimized formulation showed significantly (P>0.05) increased drug release compared to commercially available film-coated tablets. No changes in disintegration time, drug content and in in vitro drug release from optimized formulation on storage for 3months at 40 °C±2 °C/75% RH±5% RH were observed during stability studies which confirmed the stability of the optimized formulation.


2013 ◽  
Vol 49 (4) ◽  
pp. 783-792
Author(s):  
Mangesh Machhindranath Satpute ◽  
Nagesh Shivaji Tour

The demand for fast dissolving tablets has been growing during the last decade, especially for elderly and children who have swallowing difficulties. In the present work, fast dissolving tablets of metoprolol tartrate, were prepared using sodium starch glycolate, sodium croscarmellose and crospovidone as superdisintegrants, by the direct compression method. The tablets prepared were evaluated for various parameters including weight variation, hardness, friability, in vitro dispersion time, drug-polymer interaction, drug content water absorption ratio, wetting time, in vitro drug release, FTIR and DSC studies. The tablets prepared by the direct compression method had a weight variation in the range of 145 mg to 152 mg, which is below ± 7.5%, a hardness of 3.6 kg/cm² to 4.5 kg/cm², percentage friability of 0.46% to 0.73%, in vitro dispersion time of 18 s to 125 s, drug content uniformity of between 98.12% and 100.03%, a water absorption ratio of 67% to 87%, wetting time of 32 sec. to 64 sec., and an in vitro drug release of 53.92% - 98.82% within 15 min. The IR spectral analysis and DSC study showed no drug interaction with formulation additives of the tablet, and the formulations indicated no significant changes in hardness, friability, drug content or in vitro drug release. Fast dissolving tablets of metoprolol tartrate have enhanced dissolution and will lead to improved bioavailability and more effective therapy.


Author(s):  
SHALLY SHARMA ◽  
NIMRATA SETH ◽  
NARESH SINGH GILL

Objective: The present study aims to formulate and evaluate Fast dissolving tablet of Buspirone, the drug that is used for management of anxiety, by direct compression method using various Super disintegrants. Methods: Ten formulations (F1-F10) of fast dissolving tablets of Buspirone were prepared by using various Superdisintegrants. The prepared tablets were evaluated for hardness, friability, thickness, drug content uniformity, water absorption, wetting time, and disintegration time and in vitro dissolution study. Results: Among all the formulations, F10 (containing 5 mg of Coprocessed (CS: SSG 1:2) Superdisintegrants) was considered to be the best formulation, which released up to 98% drug in 20 min as compared to a marketed conventional dosage form which dissolves in approx 60 min. The results of stability study of formulation F10 after a period of two months indicated that the formulation was stable. Conclusion: It was concluded that a fast-dissolving tablet of Buspirone containing various Superdisintegrants is better and effective to meet patient compliance.


1970 ◽  
Vol 7 (5) ◽  
pp. 19-24
Author(s):  
HARITHA PASUPULATI ◽  
Y PHALGUNA ◽  
SANDHYA RUDRA

The main objective of this work is to formulate and evaluate Cetirizine HCl MFDT’s using different concentrations of superdisintegrants like croscarmellose sodium (CCS), sodium starch glycolate (SSG) and their combinations in different ratios. The in vitro disintegration time of Cetrizine Hcl prepared by direct compression method by super disintegrates were found to be in the range of 18 to 11sec fulfilling the official requirements. The bulk density and tapped bulk density for the entire formulation blend varied from 0.508 gm/cc to 0.5438 gm/cc and 0.5941 to 0.6408 respectively. The friability was found in all designed formulations in the range 0.42 to 0.74% to be well within the approved range (<1%). The weight variation was found in all designed formulation in the range 97 to 102 mg. The wetting time were found to be in the range of 11 to 18sec. Water absorption ratio for all the formulations found in the range 11 to 16%.combination of sodium starch glycolate and cross carmellose sodium (6% of 25%-ssg&75%ccs)) promotes dissolution rate of drug release when compared to formulation of SSG & CCS alone. It may be due to capillary and wicking mechanism of SSG & CCS.   Keywords:   


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


2017 ◽  
Vol 9 (4) ◽  
pp. 92
Author(s):  
Hrishav Das Purkayastha ◽  
Bipul Nath

Objective: The aim of the present investigation was to design and evaluate orally disintegrating tablet (ODT) of Ibuprofen, a NSAID drug used for the treatment of arthritis with a view to improve its oral bioavailability. The focus of the current study was to develop ODT of Ibuprofen using super disintegrants for ease of administration and its physicochemical characterization.Methods: Tablets were made from blends by direct compression method. All the ingredients were passed through mesh no. 80. All the ingredients were co-ground in a pestle motor. The resulting blend was lubricated with magnesium stearate and compressed into tablets using the Cadmach single punch (round shaped, 8 mm thick) machine.Results: Physicals parameters of the prepared tablets like Hardness, Weight variation, Friability, thickness, drug content etc. found within the limits. The disintegration time of prepared ODTs was in the range of 45 to 55 seconds. In vitro dispersion time was found to be 22 to 52 seconds which may be attributed to faster uptake of water due to the porous structure formed by super disintegrants. Short disintegration and faster release of ibuprofen were observed with Cross carmellose sodium as compared to sodium starch glycollate.Conclusion: It is concluded that F3 offered the relatively rapid release of Ibuprofen when compared with other formulations. The increase in the concentrations of super disintegrants may lead to increase in the drug release. The formulation prepared with cross carmellose sodium was offered the relatively rapid release of Ibuprofen when compared with other concentrations of both the super disintegrant. 


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


Sign in / Sign up

Export Citation Format

Share Document