The application of theranostics in different stages of prostate cancer

2021 ◽  
Author(s):  
Omar Alghazo ◽  
Renu Eapen ◽  
Samantha Koschel ◽  
Marcus Cumberbatch ◽  
James Buteau ◽  
...  

Despite the remarkable achievements in treating metastatic prostate cancer over the last two decades, castrate-resistant status is still considered the lethal stage of the disease. Theranostics combines a targeting compound (ligand) with a therapeutic radioisotope (radioactive particle) injected into the blood to target the cancer cells. The most studied radioligand is 177Lu-PSMA-617, which targets PSMA, a protein found in prostate cancer cells. This new approach has shown promising results in treating metastatic castration-resistant prostate cancer. Currently, many trials are using PSMA-targeting radioligands in combination with conventional therapies in advanced prostate cancer or even in the earlier stages of the disease. Other preclinical trials are exploring the possibility of using newer ligands or radioisotopes to treat prostate cancer to increase the specificity and efficacy of this treatment.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ding-fang Zhang ◽  
Zhi-chun Yang ◽  
Jian-qiang Chen ◽  
Xiang-xiang Jin ◽  
Yin-da Qiu ◽  
...  

Abstract Background Metastatic castration-resistant prostate cancer (CRPC) is the leading cause of death among men diagnosed with prostate cancer. Piperlongumine (PL) is a novel potential anticancer agent that has been demonstrated to exhibit anticancer efficacy against prostate cancer cells. However, the effects of PL on DNA damage and repair against CRPC have remained unclear. The aim of this study was to further explore the anticancer activity and mechanisms of action of PL against CRPC in terms of DNA damage and repair processes. Methods The effect of PL on CRPC was evaluated by MTT assay, long-term cell proliferation, reactive oxygen species assay, western blot assay, flow cytometry assay (annexin V/PI staining), β-gal staining assay and DAPI staining assay. The capacity of PL to inhibit the invasion and migration of CRPC cells was assessed by scratch-wound assay, cell adhesion assay, transwell assay and immunofluorescence (IF) assay. The effect of PL on DNA damage and repair was determined via IF assay and comet assay. Results The results showed that PL exhibited stronger anticancer activity against CRPC compared to that of taxol, cisplatin (DDP), doxorubicin (Dox), or 5-Fluorouracil (5-FU), with fewer side effects in normal cells. Importantly, PL treatment significantly decreased cell adhesion to the extracellular matrix and inhibited the migration of CRPC cells through affecting the expression and distribution of focal adhesion kinase (FAK), leading to concentration-dependent inhibition of CRPC cell proliferation and concomitantly increased cell death. Moreover, PL treatment triggered persistent DNA damage and provoked strong DNA damage responses in CRPC cells. Conclusion Collectively, our findings demonstrate that PL potently inhibited proliferation, migration, and invasion of CRPC cells and that these potent anticancer effects were potentially achieved via triggering persistent DNA damage in CRPC cells.


Endocrinology ◽  
2015 ◽  
Vol 156 (1) ◽  
pp. 58-70 ◽  
Author(s):  
Ryuta Tanimoto ◽  
Alaide Morcavallo ◽  
Mario Terracciano ◽  
Shi-Qiong Xu ◽  
Manuela Stefanello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document