Small Molecule Sigma1 Modulators Induce the Degradation of Androgen Receptor and Splice Variants in Castration Resistant Prostate Cancer Cells

2021 ◽  
Author(s):  
Nan Chen
2018 ◽  
Vol 61 (19) ◽  
pp. 8625-8638 ◽  
Author(s):  
Martina Tassinari ◽  
Graziella Cimino-Reale ◽  
Matteo Nadai ◽  
Filippo Doria ◽  
Elena Butovskaya ◽  
...  

2014 ◽  
Vol 53 (1) ◽  
pp. 31-41 ◽  
Author(s):  
Momoe Itsumi ◽  
Masaki Shiota ◽  
Akira Yokomizo ◽  
Ario Takeuchi ◽  
Eiji Kashiwagi ◽  
...  

Phorbol 12-myristate 13-acetate (PMA) induces cellular apoptosis in prostate cancer cells, the growth of which is governed by androgen/androgen receptor (AR) signaling, but the mechanism by which PMA exerts this effect remains unknown. Therefore, in this study, we investigated the mechanistic action of PMA in prostate cancer cells with regard to AR. We showed that PMA decreased E2F1 as well as AR expression in androgen-dependent prostate cancer LNCaP cells. Furthermore, PMA activated JNK and p53 signaling, resulting in the induction of cellular apoptosis. In LNCaP cells, androgen deprivation and a novel anti-androgen enzalutamide (MDV3100) augmented cellular apoptosis induced by PMA. Moreover, castration-resistant prostate cancer (CRPC) C4-2 cells were more sensitive to PMA compared with LNCaP cells and were sensitized to PMA by enzalutamide. Finally, the expression of PKC, E2F1, and AR was diminished in PMA-resistant cells, indicating that the gain of independence from PKC, E2F1, and AR functions leads to PMA resistance. In conclusion, PMA exerted its anti-cancer effects via the activation of pro-apoptotic JNK/p53 and inhibition of pro-proliferative E2F1/AR in prostate cancer cells including CRPC cells. The therapeutic effects of PMA were augmented by androgen deletion and enzalutamide in androgen-dependent prostate cancer cells, as well as by enzalutamide in castration-resistant cells. Taken together, PMA derivatives may be promising therapeutic agents for treating prostate cancer patients including CRPC patients.


2011 ◽  
Vol 286 (41) ◽  
pp. 36152-36160 ◽  
Author(s):  
Xi Yang ◽  
Zhiyong Guo ◽  
Feng Sun ◽  
Wei Li ◽  
Alan Alfano ◽  
...  

Progression from the androgen-sensitive to androgen-insensitive (or castration-resistant) stage is the major obstacle for sustained effectiveness of hormonal therapy for prostate cancer. The androgen receptor (AR) and its splice variants play important roles in regulating the transcription program essential for castration resistance. Here, we report the identification of a novel AR splice variant, designated as AR8, which is up-regulated in castration-resistant prostate cancer cells. AR8 is structurally different from other known AR splice variants because it lacks a DNA binding domain and therefore, unlikely functions as a transcription factor on its own. Immunofluorescence staining revealed that AR8 was primarily localized on the plasma membrane, possibly through palmitoylation of two cysteine residues within its unique C-terminal sequence. Mutation of these putative palmitoylation sites in AR8 led to loss of its plasma membrane localization. In addition, we demonstrated that overexpression of AR8 in prostate cancer cells promoted association of Src and AR with the EGF receptor in response to EGF treatment and enhanced tyrosine phosphorylation of AR. Conversely, specific knockdown of AR8 expression in prostate cancer cells compromised EGF-induced Src activation and AR phosphorylation. This effect was accompanied with attenuation of proliferation and increased apoptosis in prostate cancer cells cultured in androgen-depleted medium. We also showed that AR8 was required for optimal transcriptional activity of AR in response to treatment of both androgen and EGF. Taken together, our results demonstrate that the membrane-associated AR8 isoform may contribute to castration resistance by potentiating AR-mediated proliferative and survival responses to hormones and growth factors.


Sign in / Sign up

Export Citation Format

Share Document