scholarly journals MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF A THIN-WALLED BEAM SUBJECTED TO AXIAL LOADS AND END MOMENTS

2021 ◽  
Vol 19 (2) ◽  
pp. 209
Author(s):  
Goran Janevski ◽  
Predrag Kozić ◽  
Ratko Pavlović ◽  
Strain Posavljak

In this paper, the Lyapunov exponent and moment Lyapunov exponents of two degrees-of-freedom linear systems subjected to white noise parametric excitation are investigated. The method of regular perturbation is used to determine the explicit asymptotic expressions for these exponents in the presence of small intensity noises. The Lyapunov exponent and moment Lyapunov exponents are important characteristics for determining both the almost-sure and the moment stability of a stochastic dynamic system. As an example, we study the almost-sure and moment stability of a thin-walled beam subjected to stochastic axial load and stochastically fluctuating end moments.  The validity of the approximate results for moment Lyapunov exponents is checked by numerical Monte Carlo simulation method for this stochastic system.

2002 ◽  
Vol 69 (3) ◽  
pp. 346-357 ◽  
Author(s):  
W.-C. Xie

The moment Lyapunov exponents of a two-dimensional viscoelastic system under bounded noise excitation are studied in this paper. An example of this system is the transverse vibration of a viscoelastic column under the excitation of stochastic axial compressive load. The stochastic parametric excitation is modeled as a bounded noise process, which is a realistic model of stochastic fluctuation in engineering applications. The moment Lyapunov exponent of the system is given by the eigenvalue of an eigenvalue problem. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter. The results obtained are compared with those for which the effect of viscoelasticity is not considered.


2000 ◽  
Author(s):  
Wei-Chau Xie

Abstract The moment Lyapunov exponents of a two-dimensional system under bounded noise parametric excitation are studied in this paper. The method of regular perturbation is applied to obtain weak noise expansions of the moment Lyapunov exponent, Lyapunov exponent, and stability index in terms of the small fluctuation parameter.


2009 ◽  
Vol 76 (4) ◽  
Author(s):  
Jinyu Zhu ◽  
W.-C. Xie ◽  
Ronald M. C. So ◽  
X. Q. Wang

The dynamic stability of a two degrees-of-freedom system under bounded noise excitation with a narrowband characteristic is studied through the determination of moment Lyapunov exponents. The partial differential eigenvalue problem governing the moment Lyapunov exponent is established. For weak noise excitations, a singular perturbation method is employed to obtain second-order expansions of the moment Lyapunov exponents and Lyapunov exponents, which are shown to be in good agreement with those obtained using Monte Carlo simulation. The different cases when the system is in subharmonic resonance, combination additive resonance, and combined resonance in the absence of noise, respectively, are considered. The effects of noise and frequency detuning on the parametric resonance are investigated.


2005 ◽  
Vol 72 (2) ◽  
pp. 269-275 ◽  
Author(s):  
Wei-Chau Xie

A Monte Carlo simulation method for determining the pth moment Lyapunov exponents of stochastic systems, which governs the pth moment stability, is developed. Numerical results of two-dimensional systems under bounded noise and real noise excitations are presented to illustrate the approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jian Deng

The moment stochastic stability and almost-sure stochastic stability of two-degree-of-freedom coupled viscoelastic systems, under the parametric excitation of a real noise, are investigated through the moment Lyapunov exponents and the largest Lyapunov exponent, respectively. The real noise is also called the Ornstein-Uhlenbeck stochastic process. For small damping and weak random fluctuation, the moment Lyapunov exponents are determined approximately by using the method of stochastic averaging and a formulated eigenvalue problem. The largest Lyapunov exponent is calculated through its relation with moment Lyapunov exponents. The stability index, the stability boundaries, and the critical excitation are obtained analytically. The effects of various parameters on the stochastic stability of the system are then discussed in detail. Monte Carlo simulation is carried out to verify the approximate results of moment Lyapunov exponents. As an application example, the stochastic stability of a flexural-torsional viscoelastic beam is studied.


2013 ◽  
Vol 80 (5) ◽  
Author(s):  
Vladimir Stojanović ◽  
Marko Petković

In this paper, the stochastic stability of the three elastically connected Euler beams on elastic foundation is studied. The model is given as three coupled oscillators. Stochastic stability conditions are expressed by the Lyapunov exponent and moment Lyapunov exponents. It is determined that the new set of transformation for getting Ito∧ differential equations can be applied for any system of three coupled oscillators. The method of regular perturbation is used to determine the asymptotic expressions for these exponents in the presence of small intensity noises. Analytical results are presented for the almost sure and moment stability of a stochastic dynamical system. The results are applied to study the moment stability of the complex structure with influence of the white noise excitation due to the axial compressive stochastic load.


2020 ◽  
Vol 18 (2) ◽  
pp. 219
Author(s):  
Ivan R. Pavlović ◽  
Ratko Pavlović ◽  
Goran Janevski ◽  
Nikola Despenić ◽  
Vladimir Pajković

This paper investigates the almost-sure and moment stability of a double nanobeam system under stochastic compressive axial loading. By means of the Lyapunov exponent and the moment Lyapunov exponent method the stochastic stability of the nano system is analyzed for different system parameters under an axial load modeled as a wideband white noise process. The method of regular perturbation is used to determine the explicit asymptotic expressions for these exponents in the presence of small intensity noises.


Author(s):  
Jinyu Zhu ◽  
W.-C. Xie ◽  
Ronald M. C. So

Dynamic stability of a two degrees-of-freedom system under bounded noise excitation with a narrow band characteristic is studied through the determination of the moment Lyapunov exponent. The partial differential eigenvalue problem governing the moment Lyapunov exponent is established using the theory of stochastic dynamical system. For weak noise excitations, a singular perturbation method is employed to obtain second-order expansions of the moment Lyapunov exponents. The case when the system is in combination additive resonance in the absence of noise is considered and the effect of noise on the parametric resonance is investigated.


2000 ◽  
Vol 68 (3) ◽  
pp. 453-461 ◽  
Author(s):  
W.-C. Xie

The Lyapunov exponents and moment Lyapunov exponents of a near-nilpotent system under stochastic parametric excitation are studied. The system considered is the linearized system of a two-dimensional nonlinear system exhibiting a pitchfork bifurcation. The effect of stochastic perturbation in the vicinity of static pitchfork bifurcation is investigated. Approximate analytical results of Lyapunov exponent are obtained. The eigenvalue problem for the moment Lyapunov exponent is converted to a two-point boundary value problem, which is solved numerically by the method of relaxation.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850128 ◽  
Author(s):  
Jian Deng

The modern theory of stochastic dynamic stability is founded on two main exponents: the largest Lyapunov exponent and moment Lyapunov exponent. Since any fractional viscoelastic system is indeed a system with memory, data normalization during iterations will disregard past values of the response and therefore the use of data normalization seems not appropriate in numerical simulation of such systems. A new numerical simulation method is proposed for determining the [Formula: see text]th moment Lyapunov exponent, which governs the [Formula: see text]th moment stability of the fractional stochastic systems. The largest Lyapunov exponent can also be obtained from moment Lyapunov exponents. Examples of the two-dimensional fractional systems under wideband noise and bounded noise excitations are presented to illustrate the simulation method.


Sign in / Sign up

Export Citation Format

Share Document