Numerical Simulation of Dynamic Stability of Fractional Stochastic Systems

2018 ◽  
Vol 18 (10) ◽  
pp. 1850128 ◽  
Author(s):  
Jian Deng

The modern theory of stochastic dynamic stability is founded on two main exponents: the largest Lyapunov exponent and moment Lyapunov exponent. Since any fractional viscoelastic system is indeed a system with memory, data normalization during iterations will disregard past values of the response and therefore the use of data normalization seems not appropriate in numerical simulation of such systems. A new numerical simulation method is proposed for determining the [Formula: see text]th moment Lyapunov exponent, which governs the [Formula: see text]th moment stability of the fractional stochastic systems. The largest Lyapunov exponent can also be obtained from moment Lyapunov exponents. Examples of the two-dimensional fractional systems under wideband noise and bounded noise excitations are presented to illustrate the simulation method.

1996 ◽  
Vol 3 (4) ◽  
pp. 313-320 ◽  
Author(s):  
C.W.S. To ◽  
D.M. Li

Two commonly adopted expressions for the largest Lyapunov exponents of linearized stochastic systems are reviewed. Their features are discussed in light of bifurcation analysis and one expression is selected for evaluating the largest Lyapunov exponent of a linearized system. An independent method, developed earlier by the authors, is also applied to determine the bifurcation points of a van der Pol oscillator under parametric random excitation. It is shown that the bifurcation points obtained by the independent technique agree qualitatively and quantitatively with those evaluated by using the largest Lyapunov exponent of the linearized oscillator.


1993 ◽  
Vol 60 (3) ◽  
pp. 677-682 ◽  
Author(s):  
S. T. Ariaratnam ◽  
Wei-Chau Xie

The variation of the largest Lyapunov exponent for two-dimensional parametrically excited stochastic systems is studied by a method of linear transformation. The sensitivity to random disturbance of systems undergoing bifurcation is investigated. Two commonly occurring examples in structural dynamics are considered, where the random fluctuation appears in the stiffness term or the damping term. The boundaries of almost-sure stochastic stability are determined by the vanishing of the largest Lyapunov exponent of the linearized system. The validity of the approximate results is checked by numerical simulation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Abigail Ortiz ◽  
Kamil Bradler ◽  
Maxine Mowete ◽  
Stephane MacLean ◽  
Julie Garnham ◽  
...  

Abstract Background Understanding the underlying architecture of mood regulation in bipolar disorder (BD) is important, as we are starting to conceptualize BD as a more complex disorder than one of recurring manic or depressive episodes. Nonlinear techniques are employed to understand and model the behavior of complex systems. Our aim was to assess the underlying nonlinear properties that account for mood and energy fluctuations in patients with BD; and to compare whether these processes were different in healthy controls (HC) and unaffected first-degree relatives (FDR). We used three different nonlinear techniques: Lyapunov exponent, detrended fluctuation analysis and fractal dimension to assess the underlying behavior of mood and energy fluctuations in all groups; and subsequently to assess whether these arise from different processes in each of these groups. Results There was a positive, short-term autocorrelation for both mood and energy series in all three groups. In the mood series, the largest Lyapunov exponent was found in HC (1.84), compared to BD (1.63) and FDR (1.71) groups [F (2, 87) = 8.42, p < 0.005]. A post-hoc Tukey test showed that Lyapunov exponent in HC was significantly higher than both the BD (p = 0.003) and FDR groups (p = 0.03). Similarly, in the energy series, the largest Lyapunov exponent was found in HC (1.85), compared to BD (1.76) and FDR (1.67) [F (2, 87) = 11.02; p < 0.005]. There were no significant differences between groups for the detrended fluctuation analysis or fractal dimension. Conclusions The underlying nature of mood variability is in keeping with that of a chaotic system, which means that fluctuations are generated by deterministic nonlinear process(es) in HC, BD, and FDR. The value of this complex modeling lies in analyzing the nature of the processes involved in mood regulation. It also suggests that the window for episode prediction in BD will be inevitably short.


2021 ◽  
Vol 19 (2) ◽  
pp. 209
Author(s):  
Goran Janevski ◽  
Predrag Kozić ◽  
Ratko Pavlović ◽  
Strain Posavljak

In this paper, the Lyapunov exponent and moment Lyapunov exponents of two degrees-of-freedom linear systems subjected to white noise parametric excitation are investigated. The method of regular perturbation is used to determine the explicit asymptotic expressions for these exponents in the presence of small intensity noises. The Lyapunov exponent and moment Lyapunov exponents are important characteristics for determining both the almost-sure and the moment stability of a stochastic dynamic system. As an example, we study the almost-sure and moment stability of a thin-walled beam subjected to stochastic axial load and stochastically fluctuating end moments.  The validity of the approximate results for moment Lyapunov exponents is checked by numerical Monte Carlo simulation method for this stochastic system.


Author(s):  
Andrzej Stefanski ◽  
Jerzy Wojewoda ◽  
Tomasz Kapitaniak ◽  
John Brindley

Abstract Properties of chaos synchronization have been used for estimation of the largest Lyapunov exponent of a discontinuous mechanical system. A method for such estimation is proposed and an example is shown, based on coupling of two identical systems with dry friction which is modelled according to the Popp-Stelter formula.


2018 ◽  
Vol 41 ◽  
pp. 10-20 ◽  
Author(s):  
Alexandra I. Korda ◽  
Pantelis A. Asvestas ◽  
George K. Matsopoulos ◽  
Errikos M. Ventouras ◽  
Nikolaos Smyrnis

Sign in / Sign up

Export Citation Format

Share Document