scholarly journals NUMERICAL SOLUTIONS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS VIA LAPLACE TRANSFORM

Author(s):  
Süleyman Çetinkaya ◽  
Ali Demir

In this study, solutions of time-space fractional partial differential equations(FPDEs) are obtained by utilizing the Shehu transform iterative method. The utilityof the technique is shown by getting numerical solutions to a large number of FPDEs.

2018 ◽  
Vol 21 (2) ◽  
pp. 312-335 ◽  
Author(s):  
Xiao-Li Ding ◽  
Juan J. Nieto

AbstractIn this paper, we consider the analytical solutions of multi-term time-space fractional partial differential equations with nonlocal damping terms for general mixed Robin boundary conditions on a finite domain. Firstly, method of reduction to integral equations is used to obtain the analytical solutions of multi-term time fractional differential equations with integral terms. Then, the technique of spectral representation of the fractional Laplacian operator is used to convert the multi-term time-space fractional partial differential equations with nonlocal damping terms to the multi-term time fractional differential equations with integral terms. By applying the obtained analytical solutions to the resulting multi-term time fractional differential equations with integral terms, the desired analytical solutions of the multi-term time-space fractional partial differential equations with nonlocal damping terms are given. Our results are applied to derive the analytical solutions of some special cases to demonstrate their applicability.


Author(s):  
Tadeusz Jankowski

AbstractUsing the iterative method, this paper investigates the existence of a unique solution to systems of nonlinear fractional differential equations, which involve the right-handed Riemann-Liouville fractional derivatives $D^{q}_{T}x$ and $D^{q}_{T}y$. Systems of linear fractional differential equations are also discussed. Two examples are added to illustrate the results.


Author(s):  
Guotao Wang ◽  
Dumitru Baleanu ◽  
Lihong Zhang

AbstractBy applying the monotone iterative technique and the method of lower and upper solutions, this paper investigates the existence of extremal solutions for a class of nonlinear fractional differential equations, which involve the Riemann-Liouville fractional derivative D q x(t). A new comparison theorem is also build. At last, an example is given to illustrate our main results.


2021 ◽  
Vol 21 (2) ◽  
pp. 355-364
Author(s):  
ABDELKADER KEHAILI ◽  
ABDELKADER BENALI ◽  
ALI HAKEM

In this paper, we apply an efficient method called the Homotopy perturbation transform method (HPTM) to solve systems of nonlinear fractional partial differential equations. The HPTM can easily be applied to many problems and is capable of reducing the size of computational work.


2021 ◽  
Vol 5 (3) ◽  
pp. 111
Author(s):  
Samaneh Soradi-Zeid ◽  
Mehdi Mesrizadeh ◽  
Carlo Cattani

This paper introduces an efficient numerical scheme for solving a significant class of fractional differential equations. The major contributions made in this paper apply a direct approach based on a combination of time discretization and the Laplace transform method to transcribe the fractional differential problem under study into a dynamic linear equations system. The resulting problem is then solved by employing the numerical method of the quadrature rule, which is also a well-developed numerical method. The present numerical scheme, which is based on the numerical inversion of Laplace transform and equal-width quadrature rule is robust and efficient. Some numerical experiments are carried out to evaluate the performance and effectiveness of the suggested framework.


2021 ◽  
pp. 17-26
Author(s):  
Hameeda Oda AL-Humedi ◽  
Faeza Lafta Hasan

This paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.


Analysis ◽  
2018 ◽  
Vol 38 (1) ◽  
pp. 37-46 ◽  
Author(s):  
Mohammad Hossein Derakhshan ◽  
Alireza Ansari

AbstractIn this article, we study the Hyers–Ulam stability of the linear and nonlinear fractional differential equations with the Prabhakar derivative. By using the Laplace transform, we show that the introduced fractional differential equations with the Prabhakar fractional derivative is Hyers–Ulam stable. The results generalize the stability of ordinary and fractional differential equations in the Riemann–Liouville sense.


Sign in / Sign up

Export Citation Format

Share Document