scholarly journals Analogue model of gravity driven deformation in the salt tectonics zone of northeastern Mexico

2018 ◽  
Vol 35 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Diego Gracia-Marroquín ◽  
Mariano Cerca ◽  
Dora Carreón-Freyre ◽  
Bernardino Barrientos-García

In the deep seated gravity-driven deformation systems of the Gulf of Mexico contemporaneous extension and contraction of the overburden is favored by mechanical decoupling from the basement along thick salt sequences (up to 4 km). The updip extension is located inland, on the continental shelf of northeast Mexico, and is characterized by extensional listric faults and roll-overs; the downdip shortening zone is located at the deep waters and is characterized by a fold and thrust belt detached above the salt layer. Two physical experiments are used to discuss some aspects of these gravity-driven systems. The experimental setup includes a motor-driven experimental table, an inclined brittle basement (1°), a silicone layer simulating the salt sequences, and sand layers simulating the pre-kinematic Jurassic-Cretaceous strata before Laramide shortening. Deformation resulted in further tilting of the basement (3° to 4°). After the onset of deformation, thin sand layers were added at regular time intervals simulating the syntectonic sedimentation. The experiments reproduced the geometry of the deformation at the frontal ramp characterized by a seaward vergent thrust and its associated deformed region (the Perdido fold belt). The fold and thrust belt localization was favored by the change in basement inclination (a built-in slope change). Key elements interpreted in one available section of the area were reproduced in the model: a) the presence of an antithethic roll-over in the extensional zone and, b) the basinward vergence of folds and thrusts observed in the downdip shortening zone in the mexican Perdido fold belt.

2019 ◽  
Vol 132 (5-6) ◽  
pp. 997-1012 ◽  
Author(s):  
Michael R. Hudec ◽  
Tim P. Dooley ◽  
Frank J. Peel ◽  
Juan I. Soto

Abstract Passive-margin salt basins tend to be much more deformed than their nonsalt equivalents, but they are by no means all the same. We used seismic data to study the Salina del Bravo region, northeast Mexico, to investigate the ways in which margin configuration and postsalt uplift history can influence passive-margin salt tectonics. The Salina del Bravo area contains four main structural systems, all of which trend NNE across the entire region. These structures are the Bravo trough, Sigsbee salt canopy, Perdido fold-and-thrust belt, and BAHA high. Gravity-driven deformation did not begin until more than 130 m.y. after salt deposition, because of buttressing against the BAHA high. We suggest that deformation was ultimately triggered in the Cenozoic by Cordilleran uplift that tilted the margin seaward and created a major sediment source terrane. Sediments shed from the uplift expelled salt seaward to form the Sigsbee canopy. At the same time, tilted and loaded sediments were translated seaward on the Louann salt until they were buttressed against the BAHA high, forming the Perdido fold-and-thrust belt. A physical model was built to test this hypothesis. The model was able to reproduce most of the major structures in the region, suggesting that the hypothesis is reasonable. The Salina del Bravo region shows how a downdip buttress can inhibit gravity-driven salt deformation in passive-margin salt basins. Furthermore, the area also shows the importance of postsalt uplift, which can destabilize a margin through a combination of tilting and sedimentation.


Tectonics ◽  
2019 ◽  
Vol 38 (8) ◽  
pp. 2727-2755 ◽  
Author(s):  
Oriol Pla ◽  
Eduard Roca ◽  
Huiwen Xie ◽  
Esther Izquierdo‐Llavall ◽  
Josep Anton Muñoz ◽  
...  

Geology ◽  
2011 ◽  
Vol 39 (5) ◽  
pp. 439-442 ◽  
Author(s):  
Leonardo Cruz ◽  
Julian Malinski ◽  
Mia Hernandez ◽  
Andrew Take ◽  
George Hilley

Author(s):  
Alexandre Uhlein ◽  
Marco Antônio Fonseca ◽  
Hildor José Seer ◽  
Marcel Auguste Dardenne

A Faixa neoproterozóica de dobramentos e empurrões Brasília é uma das unidades tectônicas do Brasil Central. Uma análiseestrutural e tectônica da Faixa Brasília é aqui apresentada, com dois domínios estruturais: (1) interno, com unidades alóctones, foliação Spsubhorizontal ou suavemente dobrada e médio a alto grau de metamorfismo. (2) domínio externo, com estrutura de dobras e empurrões,predomínio de foliação Sp e médio a baixo grau de metamorfismo. A leste da Faixa Brasília ocorre o domínio cratônico (Craton do São Francisco), com unidades autóctones, suavemente dobradas. A vergência das dobras e empurrões é, geralmente, para o Cráton do SãoFrancisco. O encurtamento na cobertura é balanceado por zonas de cisalhamento, amplas dobras, falhas de empurrão e inversas e falhastranscorrentes. O estilo da deformação varia com o nível crustal. Assim, no domínio externo da faixa, predomina um estilo thin-skinned,enquanto que no domínio interno, aparecem zonas de deformação dúcteis mais intensas e largas, com metamorfismo mais alto (estilothick-skinned). O segmento sul da Faixa Brasília está mais deformado e provavelmente representa o resultado de uma colisão diacrônica,mais antiga, em relação ao setor setentrional. A mega inflexão dos Pirineus e a zona de superposição pode ser o resultado da interferênciaentre duas faixas neoproterozóicas distintas, com transporte tectônico local de Norte para o Sul.Palavras chave: Faixa móvel neoproterozóica Brasília; estilo nstrutural; evolução geodinâmica. ABSTRACTTECTONICS OF THE BRASÍLIA FOLD BELT: THE NORTHERN AND SOUTHERN PARTS - The Neoproterozoic (ca. 650-580) Ma Brasíliafold-and-thrust-belt is a major tectonic unit in Central Brazil and can be divided into two structural domains (internal and external). In theinternal domain, most surface rocks consist of allochthonous units in a higher metamorphic grade displaying low dipping cleavage,asymmetrical folds and thrusts with significant stratigraphic repetition. The external domain is a typical foreland fold-and-thrust belt wheremedium to low grade metamorphic rocks prevail and present steeply dipping cleavage Sp. Towards the cratonic area (cratonic domain),most lithostratigraphic units are authoctonous with vertical open folds and slaty cleavage. The general vergence of folds and thrust faults inboth domains is towards the east (São Francisco Craton). Shortening of cover across the fold belt is almost always balanced by coverbasementdetachments, fold-and-thrust structures and also by NE or NW trending wrench faults. The style of deformation variesconsiderably across strike due to crustal level. Typical thin-skinned fault-fold morphology in external domain gives rise downwards to morepervasive wide zones of ductile deformation at high metamorphic grades (thick-skinned structures) in the internal domain. The Southernpart of the Brasilia belt has a more complex deformational history than the northern one. This is probably due to structural overprintcaused by a diachronic collision. The Pirineus Inflection, where local vergence is towards the South, may represent the interference zonebetween the the two parts.Keywords: Neoproterozoic Brasília fold-and-thrust belt; structural style; Geodinamic evolution.


2016 ◽  
Vol 153 (5-6) ◽  
pp. 926-944 ◽  
Author(s):  
M. BRANELLEC ◽  
B. NIVIÈRE ◽  
J.-P. CALLOT ◽  
J.-C. RINGENBACH

AbstractWe have conducted a structural study of both the basement-involved Malargüe fold-and-thrust belt (MFTB) and the active San Rafael Block (SRB), which are located in the Central Andes at latitude 34–36°S. Based on several field examples located both in the inner and frontal part of belt and from the distal foreland zone, we focus on the relationships between basement and cover deformation with respect to the known palaeogeography and structural inheritance. In several zones, we point out similarities in the structural and sedimentary responses to Andean shortening. The recent morphologic response has also been investigated through the analysis of active deformation along the eastern border of the SRB. We show that these structural and sedimentary processes are continuous in time and space since they can be applied in the various parts of the fold belt and also at different stages of fold-and-thrust-belt building as well. Finally, we propose the illustration of those mechanisms by complete cross-section along the Rio Grande valley and a possible kinematic scenario of deformation propagation.


Sign in / Sign up

Export Citation Format

Share Document