scholarly journals Hill Climbing Algorithm based Maximum Power Tracking of a PV Array

Author(s):  
Pyatla Charan Teja

In this paper we are going to see how the MPPT algorithm is used to obtain maximum power using a booster converter from a PV array. The booster converter steps up the voltage to required level. The main aim is to track the maximum power point of a solar module and there by using it effectively and efficiently

2014 ◽  
Vol 1014 ◽  
pp. 211-215
Author(s):  
Dong Dong Luo ◽  
Shou An Chen ◽  
Yuan Ping Lin

This article puts forward improved hill-climbing algorithm based on the problems that exist in wind power system compared with traditional hill-climbing searching MPPT control algorithm.In order to obtain optimum power curve,the improved algorithm finds the maximum power point when wind speed is steady firstly,then estimating torque loss accurately of motor to calculate system power loss indirectly when system is in the state of maximum power point.At last,the disturbance step is adjusted in real time based on distance between actual work point and optimum power curve.The improved hill-climbing algorithm does not exist the phenomenon that there is concussion near the maximum power point.What is more, the tracking direction could not be misled and tracking speed is sooner for tracking maximum power point when wind speed changes rapidly.By using Matlab for algorithm simulation,the result shows that improved hill-climbing algorithm could make up for the deficiency of traditional algorithm effectively.


Author(s):  
Pyatla Charan Teja

In this paper we are going to see how the MPPT algorithm is used to obtain maximum power using a booster converter from a PV array. The booster converter steps up the voltage to required level. The main aim is to track the maximum power point of a solar module and there by using it effectively and efficiently.


2021 ◽  
pp. 1-10
Author(s):  
Imran Pervez ◽  
Adil Sarwar ◽  
Afroz Alam ◽  
Mohammad ◽  
Ripon K. Chakrabortty ◽  
...  

Due to its clean and abundant availability, solar energy is popular as a source from which to generate electricity. Solar photovoltaic (PV) technology converts sunlight incident on the solar PV panel or array directly into non-linear DC electricity. However, the non-linear nature of the solar panels’ power needs to be tracked for its efficient utilization. The problem of non-linearity becomes more prominent when the solar PV array is shaded, even leading to high power losses and concentrated heating in some areas (hotspot condition) of the PV array. Bypass diodes used to eliminate the shading effect cause multiple peaks of power on the power versus voltage (P-V) curve and make the tracking problem quite complex. Conventional algorithms to track the optimal power point cannot search the complete P-V curve and often become trapped in local optima. More recently, metaheuristic algorithms have been employed for maximum power point tracking. Being stochastic, these algorithms explore the complete search area, thereby eliminating any chance of becoming trapped stuck in local optima. This paper proposes a hybridized version of two metaheuristic algorithms, Radial Movement Optimization and teaching-learning based optimization (RMOTLBO). The algorithm has been discussed in detail and applied to multiple shading patterns in a solar PV generation system. It successfully tracks the maximum power point (MPP) in a lesser amount of time and lesser fluctuations.


2021 ◽  
Author(s):  
MIRéLI BINDER VENDRUSCOLO ◽  
ANTóNIO MANUEL SANTOS SPENCER ANDRADE

As características elétricas de rendimento e potência de um painel fotovoltaico (PV) são influenciadas por dois fatores climáticos, que são: irradiância solar e temperatura. Por essa razão, os algoritmos de MPPT (Maximum Power Point Tracking) são essenciais para se obter a máxima potência produzida. Portanto, este trabalho apresenta uma avaliação comparativa das principais técnicas clássicas de MPPT, sendo elas: Perturba e Observa (P&O), Hill Climbing (HC) e Condutância Incremental (InC). Para fazer essas avaliações de MPPT foram utilizados conversores estáticos CC-CC, tais como: Boost, Buck e Buck-Boost. No entanto, o MPPT é aplicado na entrada e saída dos conversores, a fim de observar o melhor desempenho. Os resultados de simulação são avaliados utilizado o software PSIM.


Author(s):  
Norazlan Hashim ◽  
Zainal Salam ◽  
Dalina Johari ◽  
Nik Fasdi Nik Ismail

<span>The main components of a Stand-Alone Photovoltaic (SAPV) system consists of PV array, DC-DC converter, load and the maximum power point tracking (MPPT) control algorithm. MPPT algorithm was used for extracting maximum available power from PV module under a particular environmental condition by controlling the duty ratio of DC-DC converter. Based on maximum power transfer theorem, by changing the duty cycle, the load resistance as seen by the source is varied and matched with the internal resistance of PV module at maximum power point (MPP) so as to transfer the maximum power. Under sudden changes in solar irradiance, the selection of MPPT algorithm’s sampling time (T<sub>S_MPPT</sub>) is very much depends on two main components of the converter circuit namely; inductor and capacitor. As the value of these components increases, the settling time of the transient response for PV voltage and current will also increase linearly. Consequently, T<sub>S_MPPT </sub>needs to be increased for accurate MPPT and therefore reduce the tracking speed. This work presents a design considerations of DC-DC Boost Converter used in SAPV system for fast and accurate MPPT algorithm. The conventional Hill Climbing (HC) algorithm has been applied to track the MPP when subjected to sudden changes in solar irradiance. By selecting the optimum value of the converter circuit components, a fast and accurate MPPT especially during sudden changes in irradiance has been realized.</span>


Author(s):  
Mohammed Salah Bouakkaz ◽  
◽  
Ahcene Boukadoum ◽  
Omar Boudebbouz ◽  
Issam Attoui ◽  
...  

In this work, a survey is carried out on six MPPT algorithms which include conventional and artificial intelligence based approaches. Maximum Power Point Tracking (MPPT) algorithms are used in PV systems to extract the maximum power in varying climatic conditions. The following most popular MPPT techniques are being reviewed and studied: Hill Climbing (HC), Perturb and Observe (P&O), Incremental Conductance (INC), Open-Circuit Voltage (OCV), Short Circuit Current (SCC), and Fuzzy Logic Control (FLC). The algorithms are evaluated, analyzed, and interpreted using a Matlab-Simulink environment to show the performance and limitations of each algorithm


2018 ◽  
Vol 7 (2.31) ◽  
pp. 97 ◽  
Author(s):  
M Jayakumar ◽  
V Vanitha ◽  
V Jaisuriya ◽  
M Karthikeyan ◽  
George Daniel ◽  
...  

Solar power is widely available around the globe but efficient transfer of solar power to the load becomes a challenging task. There are various methods in which the power transfer can be done, the following work proposes a method for efficient tracking of solar power.  MPPT [ maximum power point tracking] algorithm applied on three phase voltage source inverter connected to solar PV array with a three phase load. MPPT is applied on inverter rather than conventionally applying MPPT on DC-DC converter. Perturb and Observe method is applied in the MPPT algorithm to find the optimal modulation index for the inverter to transfer maximum power from the panel. Sine pulse width modulation technique is employed for controlling the switching pattern of the inverter. The algorithm is programmed for changing irradiation and temperature condition. The system does not oscillate about the MPP point as the algorithm set the system at MPP and does not vary till a variation in irradiation is sensed.  The proposed system can be installed at all places and will reduce the cost, size and losses compared to conventional system. 


2020 ◽  
Author(s):  
Zaenal Efendi ◽  
Epyk Sunarno ◽  
Farid Dwi Murdianto ◽  
Rachma Prilian Eviningsih ◽  
Lucky Pradigta Setiya Raharja ◽  
...  

Author(s):  
Lahcen El Mentaly ◽  
Abdellah Amghar ◽  
Hassan Sahsah

Abstract In this work we have presented a generalization of the Temperature Parametric (TP) Method which is based on the detection of the maximum power point by the prediction of the corresponding optimal voltage. This operating voltage is determined by the continuous measurement of the ambient temperature and solar irradiation. This new approach is based on a 3D linear regression model linking these quantities and which allows to our method to realize the maximum power point tracking in real time. The simulation shows that this new technique has a better MPPT efficiency compared to Hill Climbing technique.


Sign in / Sign up

Export Citation Format

Share Document