scholarly journals Impression Classification of Endek (Balinese Fabric) Image Using K-Nearest Neighbors Method

Author(s):  
Gede Aditra Pradnyana ◽  
I Komang Agus Suryantara ◽  
I Gede Mahendra Darmawiguna

An impression can be interpreted as a psychological feeling toward a product and it plays an important role in decision making. Therefore, the understanding of the data in the domain of impressions will be very useful. This research had the objective of knowing the performance of K-Nearest Neighbors method to classify endek image impression using K-Fold Cross Validation method. The images were taken from 3 locations, namely CV. Artha Dharma, Agung Bali Collection, and Pengrajin Sri Rejeki. To get the image impression was done by consulting with an endek expert named Dr. D.A Tirta Ray, M.Si. The process of data mining was done by using K-Nearest Neighbors Method which was a classification method to a set of data based on learning data that had been classified previously and to classify new objects based on attributes and training samples. K-Fold Cross Validation testing obtained accuracy of 91% with K value in K-Nearest Neighbors of 3, 4, 7, 8.

DIELEKTRIKA ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Ari Satriadi

Asma adalah penyakit pada saluran napas yang menyebabkan peningkatan hiperesponsif jalan napas dan menimbulkan gejala mengi/wheeze (napas berbunyi ngik-ngik). Bunyi napas wheeze merupakan salah satu ciri yang menandakan seseorang menderita asma. Penelitian ini dilakukan untuk membuat serta menguji suatu sistem yang dapat mengidentifikasi perbedaan ciri suara pernapasan wheeze pada pasien asma dan pernapasan lainnya dengan metode k-Nearest Neighbors (k-NN). Ciri suara yang digunakan yaitu rata-rata sinyal dan standar deviasi sinyal dalam domain waktu, rata-rata spektrum, standar deviasi spektrum, magnitude tertinggi saat frekuensi 0Hz, frekuensi dengan magnitude tertinggi pertama, kedua, dan ketiga.  K-NN adalah sebuah metode untuk melakukan klasifikasi terhadap objek berdasarkan data pembelajaran yang jaraknya paling dekat dengan objek tersebut. Didapatkan data suara pernapasan wheeze dan non wheeze melalui perekaman langsung kepada subjek penderita asma dan tidak asma. Dari seluruh data suara yang didapatkan kemudian dilakukan segmentasi data untuk mengambil event pernapasasn yang dibutuhkan kemudian dilakukan ekstraksi ciri untuk mendapatkan ciri matematis dari suara tersebut. 80% dari total keseluruhan data dilakukan pelatihan menggunakan metode 10 fold cross validation dan diapatkan hasil pelatihan dengan kemampuan klasifikasi maksimum pada k=3 dan k=5 dengan validitas yang sama 97,2%. Untuk pengujian kinerja k-NN pada tahap akhir diperoleh kemampuan maksimum pengklasifikasian untuk k=3 adalah 86,6% dan k=5 adalah 86,6%.


2019 ◽  
Vol 8 (3) ◽  
pp. 366-376
Author(s):  
Annisa Sugesti ◽  
Moch. Abdul Mukid ◽  
Tarno Tarno

Credit feasibility analysis is important for lenders to avoid the risk among the increasement of credit applications. This analysis can be carried out by the classification technique. Classification technique used in this research is instance-based classification. These techniques tend to be simple, but are very dependent on the determination of  K values. K is number of nearest neighbor considered for class classification of new data. A small value of K is very sensitive to outliers. This weakness can be overcome using an algorithm that is able to handle outliers, one of them is Mutual K-Nearest Neighbor (MKNN). MKNN removes outliers first, then predicts new observation classes based on the majority class of their mutual nearest neighbors. The algorithm will be compared with KNN without outliers. The model is evaluated by 10-fold cross validation and the classification performance is measured by Gemoetric-Mean of sensitivity and specificity. Based on the analysis the optimal value of K is 9 for MKNN and 3 for KNN, with the highest G-Mean produced by KNN is equal to 0.718, meanwhile G-Mean produced by MKNN is 0.702. The best alternative to classifying credit feasibility in this study is K-Nearest Neighbor (KNN) algorithm with K=3.Keywords: Classification, Credit, MKNN, KNN, G-Mean.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3044-3044
Author(s):  
David Haan ◽  
Anna Bergamaschi ◽  
Yuhong Ning ◽  
William Gibb ◽  
Michael Kesling ◽  
...  

3044 Background: Epigenomics assays have recently become popular tools for identification of molecular biomarkers, both in tissue and in plasma. In particular 5-hydroxymethyl-cytosine (5hmC) method, has been shown to enable the epigenomic regulation of gene expression and subsequent gene activity, with different patterns, across several tumor and normal tissues types. In this study we show that 5hmC profiles enable discrete classification of tumor and normal tissue for breast, colorectal, lung ovary and pancreas. Such classification was also recapitulated in cfDNA from patient with breast, colorectal, lung, ovarian and pancreatic cancers. Methods: DNA was isolated from 176 fresh frozen tissues from breast, colorectal, lung, ovary and pancreas (44 per tumor per tissue type and up to 11 tumor tissues for each stage (I-IV)) and up to 10 normal tissues per tissue type. cfDNA was isolated from plasma from 783 non-cancer individuals and 569 cancer patients. Plasma-isolated cfDNA and tumor genomic DNA, were enriched for the 5hmC fraction using chemical labelling, sequenced, and aligned to a reference genome to construct features sets of 5hmC patterns. Results: 5hmC multinomial logistic regression analysis was employed across tumor and normal tissues and identified a set of specific and discrete tumor and normal tissue gene-based features. This indicates that we can classify samples regardless of source, with a high degree of accuracy, based on tissue of origin and also distinguish between normal and tumor status.Next, we employed a stacked ensemble machine learning algorithm combining multiple logistic regression models across diverse feature sets to the cfDNA dataset composed of 783 non cancers and 569 cancers comprising 67 breast, 118 colorectal, 210 Lung, 71 ovarian and 100 pancreatic cancers. We identified a genomic signature that enable the classification of non-cancer versus cancers with an outer fold cross validation sensitivity of 49% (CI 45%-53%) at 99% specificity. Further, individual cancer outer fold cross validation sensitivity at 99% specificity, was measured as follows: breast 30% (CI 119% -42%); colorectal 41% (CI 32%-50%); lung 49% (CI 42%-56%); ovarian 72% (CI 60-82%); pancreatic 56% (CI 46%-66%). Conclusions: This study demonstrates that 5hmC profiles can distinguish cancer and normal tissues based on their origin. Further, 5hmC changes in cfDNA enables detection of the several cancer types: breast, colorectal, lung, ovarian and pancreatic cancers. Our technology provides a non-invasive tool for cancer detection with low risk sample collection enabling improved compliance than current screening methods. Among other utilities, we believe our technology could be applied to asymptomatic high-risk individuals thus enabling enrichment for those subjects that most need a diagnostic imaging follow up.


Author(s):  
Luke A Matkovic ◽  
Tonghe Wang ◽  
Yang Lei ◽  
Oladunni O Akin-Akintayo ◽  
Olayinka A Abiodun Ojo ◽  
...  

Abstract Focal dose boost to dominant intraprostatic lesions (DILs) has recently been proposed for prostate radiation therapy. Accurate and fast delineation of the prostate and DILs is thus required during treatment planning. We propose a learning-based method using positron emission tomography (PET)/computed tomography (CT) images to automatically segment the prostate and its DILs. To enable end-to-end segmentation, a deep learning-based method, called cascaded regional-Net, is utilized. The first network, referred to as dual attention network (DAN), is used to segment the prostate via extracting comprehensive features from both PET and CT images. A second network, referred to as mask scoring regional convolutional neural network (MSR-CNN), is used to segment the DILs from the PET and CT within the prostate region. Scoring strategy is used to diminish the misclassification of the DILs. For DIL segmentation, the proposed cascaded regional-Net uses two steps to remove normal tissue regions, with the first step cropping images based on prostate segmentation and the second step using MSR-CNN to further locate the DILs. The binary masks of DILs and prostates of testing patients are generated from PET/CT by the trained network. To evaluate the proposed method, we retrospectively investigated 49 PET/CT datasets. On each dataset, the prostate and DILs were delineated by physicians and set as the ground truths and training targets. The proposed method was trained and evaluated using a five-fold cross-validation and a hold-out test. The mean surface distance and DSC values were 0.666±0.696mm and 0.932±0.059 for the prostate and 1.209±1.954mm and 0.757±0.241 for the DILs among all 49 patients. The proposed method has demonstrated great potential for improving the efficiency and reducing the observer variability of prostate and DIL contouring for DIL focal boost prostate radiation therapy.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 27-31
Author(s):  
Ken-ji Ee ◽  
Ahmad Fakhri Bin Ab. Nasir ◽  
Anwar P. P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Nur Hafieza Ismail

The animal classification system is a technology to classify the animal class (type) automatically and useful in many applications. There are many types of learning models applied to this technology recently. Nonetheless, it is worth noting that the extraction of the features and the classification of the animal features is non-trivial, particularly in the deep learning approach for a successful animal classification system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards animal classification applications are somewhat limited. The present study aims to determine a suitable TL-conventional classifier pipeline for animal classification. The VGG16 and VGG19 were used in extracting features and then coupled with either k-Nearest Neighbour (k-NN) or Support Vector Machine (SVM) classifier. Prior to that, a total of 4000 images were gathered consisting of a total of five classes which are cows, goats, buffalos, dogs, and cats. The data was split into the ratio of 80:20 for train and test. The classifiers hyper parameters are tuned by the Grids Search approach that utilises the five-fold cross-validation technique. It was demonstrated from the study that the best TL pipeline identified is the VGG16 along with an optimised SVM, as it was able to yield an average classification accuracy of 0.975. The findings of the present investigation could facilitate animal classification application, i.e. for monitoring animals in wildlife.


Sign in / Sign up

Export Citation Format

Share Document