Genome-wide 5hmC profiles to enable cancer detection and tissue of origin classification in breast, colorectal, lung, ovarian, and pancreatic cancers.

2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 3044-3044
Author(s):  
David Haan ◽  
Anna Bergamaschi ◽  
Yuhong Ning ◽  
William Gibb ◽  
Michael Kesling ◽  
...  

3044 Background: Epigenomics assays have recently become popular tools for identification of molecular biomarkers, both in tissue and in plasma. In particular 5-hydroxymethyl-cytosine (5hmC) method, has been shown to enable the epigenomic regulation of gene expression and subsequent gene activity, with different patterns, across several tumor and normal tissues types. In this study we show that 5hmC profiles enable discrete classification of tumor and normal tissue for breast, colorectal, lung ovary and pancreas. Such classification was also recapitulated in cfDNA from patient with breast, colorectal, lung, ovarian and pancreatic cancers. Methods: DNA was isolated from 176 fresh frozen tissues from breast, colorectal, lung, ovary and pancreas (44 per tumor per tissue type and up to 11 tumor tissues for each stage (I-IV)) and up to 10 normal tissues per tissue type. cfDNA was isolated from plasma from 783 non-cancer individuals and 569 cancer patients. Plasma-isolated cfDNA and tumor genomic DNA, were enriched for the 5hmC fraction using chemical labelling, sequenced, and aligned to a reference genome to construct features sets of 5hmC patterns. Results: 5hmC multinomial logistic regression analysis was employed across tumor and normal tissues and identified a set of specific and discrete tumor and normal tissue gene-based features. This indicates that we can classify samples regardless of source, with a high degree of accuracy, based on tissue of origin and also distinguish between normal and tumor status.Next, we employed a stacked ensemble machine learning algorithm combining multiple logistic regression models across diverse feature sets to the cfDNA dataset composed of 783 non cancers and 569 cancers comprising 67 breast, 118 colorectal, 210 Lung, 71 ovarian and 100 pancreatic cancers. We identified a genomic signature that enable the classification of non-cancer versus cancers with an outer fold cross validation sensitivity of 49% (CI 45%-53%) at 99% specificity. Further, individual cancer outer fold cross validation sensitivity at 99% specificity, was measured as follows: breast 30% (CI 119% -42%); colorectal 41% (CI 32%-50%); lung 49% (CI 42%-56%); ovarian 72% (CI 60-82%); pancreatic 56% (CI 46%-66%). Conclusions: This study demonstrates that 5hmC profiles can distinguish cancer and normal tissues based on their origin. Further, 5hmC changes in cfDNA enables detection of the several cancer types: breast, colorectal, lung, ovarian and pancreatic cancers. Our technology provides a non-invasive tool for cancer detection with low risk sample collection enabling improved compliance than current screening methods. Among other utilities, we believe our technology could be applied to asymptomatic high-risk individuals thus enabling enrichment for those subjects that most need a diagnostic imaging follow up.

2018 ◽  
Author(s):  
William Zeng ◽  
Benjamin S. Glicksberg ◽  
Yangyan Li ◽  
Bin Chen

AbstractBackgroundNormal tissue samples are often employed as a control for understanding disease mechanisms, however, collecting matched normal tissues from patients is difficult in many instances. In cancer research, for example, the open cancer resources such as TCGA and TARGET do not provide matched tissue samples for every cancer or cancer subtype. The recent GTEx project has profiled samples from healthy individuals, providing an excellent resource for this field, yet the feasibility of using GTEx samples as the reference remains unanswered.MethodsWe analyze RNA-Seq data processed from the same computational pipeline and systematically evaluate GTEx as a potential reference resource. We use those cancers that have adjacent normal tissues in TCGA as a benchmark for the evaluation. To correlate tumor samples and normal samples, we explore top varying genes, reduced features from principal component analysis, and encoded features from an autoencoder neural network. We first evaluate whether these methods can identify the correct tissue of origin from GTEx for a given cancer and then seek to answer whether disease expression signatures are consistent between those derived from TCGA and from GTEx.ResultsAmong 32 TCGA cancers, 18 cancers have less than 10 matched adjacent normal tissue samples. Among three methods, autoencoder performed the best in predicting tissue of origin, with 12 of 14 cancers correctly predicted. The reason for misclassification of two cancers is that none of normal samples from GTEx correlate well with any tumor samples in these cancers. This suggests that GTEx has matched tissues for the majority cancers, but not all. While using autoencoder to select proper normal samples for disease signature creation, we found that disease signatures derived from normal samples selected via an autoencoder from GTEx are consistent with those derived from adjacent samples from TCGA in many cases. Interestingly, choosing top 50 mostly correlated samples regardless of tissue type performed reasonably well or even better in some cancers.ConclusionsOur findings demonstrate that samples from GTEx can serve as reference normal samples for cancers, especially those do not have available adjacent tissue samples. A deep-learning based approach holds promise to select proper normal samples.


Mekatronika ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 27-31
Author(s):  
Ken-ji Ee ◽  
Ahmad Fakhri Bin Ab. Nasir ◽  
Anwar P. P. Abdul Majeed ◽  
Mohd Azraai Mohd Razman ◽  
Nur Hafieza Ismail

The animal classification system is a technology to classify the animal class (type) automatically and useful in many applications. There are many types of learning models applied to this technology recently. Nonetheless, it is worth noting that the extraction of the features and the classification of the animal features is non-trivial, particularly in the deep learning approach for a successful animal classification system. The use of Transfer Learning (TL) has been demonstrated to be a powerful tool in the extraction of essential features. However, the employment of such a method towards animal classification applications are somewhat limited. The present study aims to determine a suitable TL-conventional classifier pipeline for animal classification. The VGG16 and VGG19 were used in extracting features and then coupled with either k-Nearest Neighbour (k-NN) or Support Vector Machine (SVM) classifier. Prior to that, a total of 4000 images were gathered consisting of a total of five classes which are cows, goats, buffalos, dogs, and cats. The data was split into the ratio of 80:20 for train and test. The classifiers hyper parameters are tuned by the Grids Search approach that utilises the five-fold cross-validation technique. It was demonstrated from the study that the best TL pipeline identified is the VGG16 along with an optimised SVM, as it was able to yield an average classification accuracy of 0.975. The findings of the present investigation could facilitate animal classification application, i.e. for monitoring animals in wildlife.


2021 ◽  
pp. 481-490
Author(s):  
Pruthvi Tilekar ◽  
Purnima Singh ◽  
Nagnath Aherwadi ◽  
Sagar Pande ◽  
Aditya Khamparia

2020 ◽  
Vol 12 (20) ◽  
pp. 3284
Author(s):  
Paramita Roy ◽  
Subodh Chandra Pal ◽  
Alireza Arabameri ◽  
Rabin Chakrabortty ◽  
Biswajeet Pradhan ◽  
...  

The extreme form of land degradation through different forms of erosion is one of the major problems in sub-tropical monsoon dominated region. The formation and development of gullies is the dominant form or active process of erosion in this region. So, identification of erosion prone regions is necessary for escaping this type of situation and maintaining the correspondence between different spheres of the environment. The major goal of this study is to evaluate the gully erosion susceptibility in the rugged topography of the Hinglo River Basin of eastern India, which ultimately contributes to sustainable land management practices. Due to the nature of data instability, the weakness of the classifier andthe ability to handle data, the accuracy of a single method is not very high. Thus, in this study, a novel resampling algorithm was considered to increase the robustness of the classifier and its accuracy. Gully erosion susceptibility maps have been prepared using boosted regression trees (BRT), multivariate adaptive regression spline (MARS) and spatial logistic regression (SLR) with proposed resampling techniques. The re-sampling algorithm was able to increase the efficiency of all predicted models by improving the nature of the classifier. Each variable in the gully inventory map was randomly allocated with 5-fold cross validation, 10-fold cross validation, bootstrap and optimism bootstrap, while each consisted of 30% of the database. The ensemble model was tested using 70% and validated with the other 30% using the K-fold cross validation (CV) method to evaluate the influence of the random selection of training and validation database. Here, all resampling methods are associated with higher accuracy, but SLR bootstrap optimism is more optimal than any other methods according to its robust nature. The AUC values of BRT optimism bootstrap, MARS optimism bootstrap and SLR optimism bootstrap are 87.40%, 90.40% and 90.60%, respectively. According to the SLR optimism bootstrap, the 107,771 km2 (27.51%) area of this region is associated with a very high to high susceptible to gully erosion. This potential developmental area of the gully was found primarily in the Hinglo River Basin, where lateral exposure was mainly observed with scarce vegetation. The outcome of this work can help policy-makers to implement remedial measures to minimize the damage caused by erosion of the gully.


2020 ◽  
Vol 48 (5) ◽  
pp. 030006052091922
Author(s):  
Qiao Yang ◽  
Xian Zhong Jiang ◽  
Yong Fen Zhu ◽  
Fang Fang Lv

Objective We aimed to analyze the risk factors and to establish a predictive tool for the occurrence of bloodstream infections (BSI) in patients with cirrhosis. Methods A total of 2888 patients with cirrhosis were retrospectively included. Multivariate analysis for risk factors of BSI were tested using logistic regression. Multivariate logistic regression was validated using five-fold cross-validation. Results Variables that were independently associated with incidence of BSI were white blood cell count (odds ratio [OR] = 1.094, 95% confidence interval [CI] 1.063–1.127)], C-reactive protein (OR = 1.005, 95% CI 1.002–1.008), total bilirubin (OR = 1.003, 95% CI 1.002–1.004), and previous antimicrobial exposure (OR = 4.556, 95% CI 3.369–6.160); albumin (OR = 0.904, 95% CI 0.883–0.926), platelet count (OR = 0.996, 95% CI 0.994–0.998), and serum creatinine (OR = 0.989, 95% CI 0.985–0.994) were associated with lower odds of BSI. The area under receiver operating characteristic (ROC) curve of the risk assessment scale was 0.850, and its sensitivity and specificity were 0.762 and 0.801, respectively. There was no significant difference between the ROC curves of cross-validation and risk assessment. Conclusions We developed a predictive tool for BSI in patients with cirrhosis, which could help with early identification of such episodes at admission, to improve outcome in these patients.


2020 ◽  
Vol 10 (6) ◽  
pp. 1999 ◽  
Author(s):  
Milica M. Badža ◽  
Marko Č. Barjaktarović

The classification of brain tumors is performed by biopsy, which is not usually conducted before definitive brain surgery. The improvement of technology and machine learning can help radiologists in tumor diagnostics without invasive measures. A machine-learning algorithm that has achieved substantial results in image segmentation and classification is the convolutional neural network (CNN). We present a new CNN architecture for brain tumor classification of three tumor types. The developed network is simpler than already-existing pre-trained networks, and it was tested on T1-weighted contrast-enhanced magnetic resonance images. The performance of the network was evaluated using four approaches: combinations of two 10-fold cross-validation methods and two databases. The generalization capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation, and the improvement was tested by using an augmented image database. The best result for the 10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good execution speed, the new developed CNN architecture could be used as an effective decision-support tool for radiologists in medical diagnostics.


2013 ◽  
Vol 658 ◽  
pp. 647-651 ◽  
Author(s):  
Jun Jie Zhu ◽  
Xiao Jun Zhang ◽  
Ji Hua Gu ◽  
He Ming Zhao ◽  
Qiang Zhou ◽  
...  

This paper mainly studies on the classification of pathological voice from normal voice based on the sustained vowel /a/. Firstly, the original 18 acoustic features are extracted. Then on the basis of the extracted parameters, this paper recognizes the pathological voice using AD Tree. During the classification stage, the cross-validation of features is also as references in the process. This method is validated with a sound database provided by the Massachusetts Eye and Ear Infirmary (MEEI). After the 10 fold cross-validation, comparing with 7 other kinds of classifiers, the experimental results show that AD Tree can get the highest recognition rate of 95.2%. The method in this paper shows that all the extracted parameters are reasonable in the following recognition process and AD tree is a good recognition way in pathological voice research.


2008 ◽  
Vol 17 (05) ◽  
pp. 957-971
Author(s):  
ATAOLLAH EBRAHIMZADEH ◽  
ABOLFAZL RANJBAR ◽  
MEHRDAD ARDEBLILPOUR

Classification of the communication signals has seen under increasing demands. In this paper, we present a new technique that identifies a variety of digital communication signal types. This technique utilizes a radial basis function neural network (RBFN) as the classifier. Swarm intelligence, as an evolutionary algorithm, is used to construct RBFN. A combination of the higher-order moments and the higher-order cumulants up to eight are selected as the features of the considered digital signal types. In conjunction with RBFN, we have used k-fold cross-validation to improve the generalization potentiality. Simulation results show that the proposed technique has high performance for classification of different communication signals even at very low signal-to-noise ratios.


2021 ◽  
Vol 4 (1) ◽  
pp. 14
Author(s):  
Husna Afanyn Khoirunissa ◽  
Amanda Rizky Widyaningrum ◽  
Annisa Priliya Ayu Maharani

<p>The Bank is a business entity that is dealing with money, accepting deposits from customers, providing funds for each withdrawal, billing checks on the customer's orders, giving credit and or embedding the excess deposits until required for repayment. The purpose of this research is to determine the influence of age, gender, country, customer credit score, number of bank products used by the customer, and the activation of the bank members in the decision to choose to continue using the bank account that he has retained or closed the bank account. The data in this research used 10,000 respondents originating from France, Spain, and Germany. The method used is data mining with early stage preprocessing to clean data from outlier and missing value and feature selection to select important attributes. Then perform the classification using three methods, which are Random Forest, Logistic Regression, and Multilayer Perceptron. The results of this research showed that the model with Multilayer Perceptron method with 10 folds Cross Validation is the best model with 85.5373% accuracy.</p><strong>Keywords:</strong> bank customer, random forest, logistic regression, multilayer perceptron


Author(s):  
Gede Aditra Pradnyana ◽  
I Komang Agus Suryantara ◽  
I Gede Mahendra Darmawiguna

An impression can be interpreted as a psychological feeling toward a product and it plays an important role in decision making. Therefore, the understanding of the data in the domain of impressions will be very useful. This research had the objective of knowing the performance of K-Nearest Neighbors method to classify endek image impression using K-Fold Cross Validation method. The images were taken from 3 locations, namely CV. Artha Dharma, Agung Bali Collection, and Pengrajin Sri Rejeki. To get the image impression was done by consulting with an endek expert named Dr. D.A Tirta Ray, M.Si. The process of data mining was done by using K-Nearest Neighbors Method which was a classification method to a set of data based on learning data that had been classified previously and to classify new objects based on attributes and training samples. K-Fold Cross Validation testing obtained accuracy of 91% with K value in K-Nearest Neighbors of 3, 4, 7, 8.


Sign in / Sign up

Export Citation Format

Share Document