Prediction of the fatigue life of VT1-0 titanium in various structural states under very high cycle fatigue

2021 ◽  
Vol 11 (4) ◽  
pp. 422-426
Author(s):  
Dmitry Ledon ◽  
Mikhail Bannikov ◽  
Vladimir Oborin ◽  
Yuriy Bayandin ◽  
Oleg Naimark
Author(s):  
Ming Zhang ◽  
Weiqiang Wang ◽  
Aiju Li

The authors researched the effects of specimen size on the very high cycle fatigue properties of FV520B-I through ultrasonic fatigue testing. The test results showed that the very high cycle fatigue mechanism was not changed and the fatigue properties declined as the specimen size increased. The S-N curve moved downward and the fatigue life decreased under the same stress level maybe due to the heat effects of large specimens in tests. The fatigue strength and the fatigue life were predicted by relevant models. The prediction of fatigue strength was close to test result, and the prediction of fatigue life was less effective compared with the previous prediction of small size specimen test results.


2021 ◽  
Vol 45 (3) ◽  
pp. 207-215
Author(s):  
Zhenduo Sun ◽  
Dongbo Hou ◽  
Wei Li

The work aims to study the influence of carburizing and nitriding on fatigue properties of 18Cr2Ni4WA high strength steel in very high cycle fatigue regime. Very high cycle fatigue tests were carried out on 18Cr2Ni4WA Steel after carburizing and nitriding respectively. The micro morphology of fatigue fracture was observed by scanning electron microscope, the failure mode and failure mechanism were discussed. The relationship between fatigue life and defect size, FGA size, fish eye size of fracture was analyzed. The characteristic size of defects is evaluated by Gumbel, Weibull and GEV distribution functions, and a modified Akiniwa fatigue life prediction model considering the relationship between FGA size and inclusion size was established. The results showed that, nitriding and carburizing treatment improve the surface fatigue limit of the steel. The fatigue life decreases with the increase of internal defect size and FGA size. After carburizing and nitriding treatment, the internal fatigue strength of the specimen decreases slightly. When the failure probability is 99%, the internal defect sizes of nitrided specimens calculated by Weibull, Gumbel and GEV distributions are 141.5 μm, 148.4 μm and 211.7 μm respectively. The calculated internal defect sizes of carburized specimens are 47 μm, 67.8 μm and 40 μm respectively. Compared with the experimental data, the fatigue strength predicted by GEV is the most appropriate. carburizing and nitriding treatment can improve the surface fatigue strength of 18Cr2Ni4WA steel, but slightly reduce the internal fatigue strength. The prediction result of the new model is conservative when the failure probability is 99%, which is suitable for engineering application.


2015 ◽  
Vol 664 ◽  
pp. 118-127 ◽  
Author(s):  
Shoichi Kikuchi ◽  
Stefan Heinz ◽  
Dietmar Eifler ◽  
Yuta Nakamura ◽  
Akira Ueno

Fatigue tests were carried out at the stress ratio R = -1 using a 20 kHz ultrasonic testing facility to investigate the effects of low temperature nitriding on the fatigue properties of Ti-6Al-4V alloy in the very high cycle fatigue (VHCF) regime in detail. The oscillation and fatigue behavior of the nitrided Ti-alloy were characterized by measuring parameters like the ultrasonic generator power, the displacement of the specimens and dissipated energy under ultrasonic cyclic load. Moreover, the surface microstructure of the nitrided Ti-alloy was characterized using a micro-Vickers hardness tester, an optical microscope, scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron backscatter diffraction technique (EBSD) to clarify the fatigue fracture mechanism. The Ti-alloy nitrided at the temperature of 873 K showed duplex S-N properties consisting of the respective fracture modes of the surface fracture and the subsurface fracture. The low temperature nitriding reduced the surface fatigue life of Ti-alloy in comparison to the un-nitrided one due to the formation of a brittle titanium nitride (Ti2N), whereas the subsurface fatigue life in the VHCF regime was increased by the low temperature nitriding. In addition, the fatigue fracture mechanisms of the low temperature nitrided Ti-alloy were discussed from viewpoints of fractography and fracture mechanics.


2005 ◽  
Vol 54 (2) ◽  
pp. 181-186 ◽  
Author(s):  
Takamoto ITOH ◽  
Shuji HATTORI ◽  
Hiroshi FUJII ◽  
Hayato WAKATSUKI ◽  
Katsumi WATASHI ◽  
...  

2011 ◽  
Vol 2011 (0) ◽  
pp. _OS0602-1_-_OS0602-3_
Author(s):  
Yuuji SHIMATANI ◽  
Kazuaki SHIOZAWA ◽  
Syoichiro MURATA ◽  
Takashi YOSHIMOTO ◽  
Masao KOSHI

2015 ◽  
Vol 664 ◽  
pp. 22-30
Author(s):  
Yong Jie Liu ◽  
Muhammad Kashif Khan ◽  
Qing Yuan Wang

The top 10 most influential articles in Very high cycle fatigue (VHCF) have been indentified from web of science data. The attributes of the top 10 papers have been discussed. It was found that specialty area of fatigue called as “VHCF” is an emerging field. The most cited papers discussed the two the fatigue crack mechanism in fatigue. It was found that crack initiation shifts from surface to subsurface if the material beyond 107 cycles. There are some models which can predict the fatigue life of the material however the exact estimation is still challenging. Hence, it was found that still further efforts are required in the field to accurately understand the VHCF behavior.


2016 ◽  
Vol 2 ◽  
pp. 1085-1092
Author(s):  
Anton Kolyshkin ◽  
Andrei Grigorescu ◽  
Edgar Kaufmann ◽  
Martina Zimmermann ◽  
Hans-Jürgen Christ

Sign in / Sign up

Export Citation Format

Share Document