scholarly journals A New Exponential Approach for Reducing the Mean Squared Errors of the Estimators of Population Mean Using Conventional and Non-Conventional Location Parameters

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Housila P. Singh ◽  
Anita Yadav

Classes of ratio-type estimators t (say) and ratio-type exponential estimators te (say) of the population mean are proposed, and their biases and mean squared errors under large sample approximation are presented. It is the class of ratio-type exponential estimators te provides estimators more efficient than the ratio-type estimators.

2010 ◽  
Vol 15 (2) ◽  
pp. 233-253 ◽  
Author(s):  
Gajendra K. Vishwakarma ◽  
Housila P. Singh ◽  
Sarjinder Singh

This paper suggests a family of estimators of population mean using multiauxiliary variate based on post-stratified sampling and its properties are studied under large sample approximation. Asymptotically optimum estimator in the class is identified alongwith its approximate variance formulae. The proposed class of estimators is also compared with corresponding unstratified class of estimators based on estimated optimum value. At the end, an empirical study has been carried out to support the proposed methodology.


2020 ◽  
Vol 8 (2) ◽  
pp. 49-56
Author(s):  
Akan Anieting

In this article, a new estimator for population mean in two-phase stratified sampling in the presence of nonresponse using single auxiliary variable has been proposed. The bias and Mean Squared Error (MSE) of the proposed estimator has been given using large sample approximation. The empirical study shows that the MSE of the proposed estimator is more efficient than existing estimators. The optimum values of first and second phase sample have been determined.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Angela Shirley ◽  
Ashok Sahai ◽  
Isaac Dialsingh

To achieve a more efficient use of auxiliary information we propose single-parameter ratio/product-cum-mean-per-unit estimators for a finite population mean in a simple random sample without replacement when the magnitude of the correlation coefficient is not very high (less than or equal to 0.7). The first order large sample approximation to the bias and the mean square error of our proposed estimators are obtained. We use simulation to compare our estimators with the well-known sample mean, ratio, and product estimators, as well as the classical linear regression estimator for efficient use of auxiliary information. The results are conforming to our motivating aim behind our proposition.


2021 ◽  
Vol 4 (2) ◽  
pp. 41-51
Author(s):  
A.E. Anieting ◽  
E. I. Enang ◽  
C. E. Onwukwe

A modified form of the population mean estimator suggested by Anieting and Enang (2020) in stratified double sampling in the presence of nonresponse using a single auxiliary variable has been proposed. The Mean Squared Error (MSE) and the bias of the proposed estimator have been given using large sample approximation. The empirical study shows that the MSE of the suggested estimator is more efficient than all other existing estimators in the same scheme. Determination of the optimal values of the first and second phases samples has also been done


2016 ◽  
Vol 12 (2) ◽  
pp. 5-39 ◽  
Author(s):  
S. K. Pal ◽  
H. P. Singh

Abstract In surveys covering human populations it is observed that information in most cases are not obtained at the first attempt even after some callbacks. Such problems come under the category of non-response. Surveys suffer with non-response in various ways. It depends on the nature of required information, either surveys is concerned with general or sensitive issues of a society. Hansen and Hurwitz (1946) have considered the problem of non-response while estimating the population mean by taking a subsample from the non-respondent group with the help of extra efforts and an estimator was suggested by combining the information available from the response and nonresponse groups. We also mention that in survey sampling auxiliary information is commonly used to improve the performance of an estimator of a quantity of interest. For estimating the population mean using auxiliary information in presence of non-response has been discussed by various authors. In this paper, we have developed estimators for estimating the population mean of the variable under interest when there is non-response error in the study as well as in the auxiliary variable. We have studied properties of the suggested estimators under large sample approximation. Comparison of the suggested estimators with usual unbiased estimator reported by Hansen and Hurwitz (1946) and the ratio estimator due to Rao (1986) have been made. The results obtained are illustrated with aid of an empirical study.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Javid Shabbir ◽  
Sat Gupta ◽  
Ronald Onyango

In this paper, we propose an improved new class of exponential-ratio-type estimators for estimating the finite population mean using the conventional and the nonconventional measures of the auxiliary variable. Expressions for the bias and MSE are obtained under large sample approximation. Both simulation and numerical studies are conducted to validate the theoretical findings. Use of the conventional and the nonconventional measures of the auxiliary variable is very common in survey research, but we observe that this does not add much value in many of the estimators except for our proposed class of estimators.


2021 ◽  
Vol 6 (12) ◽  
pp. 13592-13607
Author(s):  
Xuechen Liu ◽  
◽  
Muhammad Arslan ◽  

<abstract><p>This article deals with estimation of finite population mean using the auxiliary proportion under simple and two phase sampling scheme utilizing two auxiliary variables. Mathematical expressions for the mean squared errors of the proposed estimators are derived under first order of approximation. We compare the proposed class of estimators "theoretically and numerically" with the usual mean estimator of Naik and Gupta <sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>. The theoretical as well as numerical findings support the superiority of our proposed class of estimator as compared to estimators available in literature.</p></abstract>


Methodology ◽  
2009 ◽  
Vol 5 (1) ◽  
pp. 3-6 ◽  
Author(s):  
Merton S. Krause

There is another important artifactual contributor to the apparent improvement of persons subjected to an experimental intervention which may be mistaken for regression toward the mean. This is the phenomenon of random error and extreme selection, which does not at all involve the population regression of posttest on pretest scores but involves a quite different and independent reversion of subjects’ scores toward the population mean. These two independent threats to the internal validity of intervention evaluation studies, however, can be detected and differentiated on the sample data of such studies.


Sign in / Sign up

Export Citation Format

Share Document