scholarly journals Efficient Estimator for Population Mean in Stratified Double Sampling in the Presence of Nonresponse Using One Auxiliary Variable

2021 ◽  
Vol 4 (2) ◽  
pp. 41-51
Author(s):  
A.E. Anieting ◽  
E. I. Enang ◽  
C. E. Onwukwe

A modified form of the population mean estimator suggested by Anieting and Enang (2020) in stratified double sampling in the presence of nonresponse using a single auxiliary variable has been proposed. The Mean Squared Error (MSE) and the bias of the proposed estimator have been given using large sample approximation. The empirical study shows that the MSE of the suggested estimator is more efficient than all other existing estimators in the same scheme. Determination of the optimal values of the first and second phases samples has also been done

2020 ◽  
Vol 8 (2) ◽  
pp. 49-56
Author(s):  
Akan Anieting

In this article, a new estimator for population mean in two-phase stratified sampling in the presence of nonresponse using single auxiliary variable has been proposed. The bias and Mean Squared Error (MSE) of the proposed estimator has been given using large sample approximation. The empirical study shows that the MSE of the proposed estimator is more efficient than existing estimators. The optimum values of first and second phase sample have been determined.


Author(s):  
Priya Mehta ◽  
Rajesh Tailor

This paper discusses chain ratio type estimator for estimation of population mean in double sampling. The developed estimator uses two auxiliary variates associated with study variate in order to increases its efficiency. The developed estimator has been compared with usual unbiased estimator and other existing estimators. The expression for the bias and mean squared error of the developed estimator is obtained under large sample approximation. We have considered the natural population data set to examine the merits of the developed estimator and carried out the empirical study in support of theoretical findings. Numerical illustration shows that the proposed estimator is more efficient.


2017 ◽  
Vol 13 (2) ◽  
pp. 77-108
Author(s):  
H. P. Singh ◽  
A. Yadav

Abstract In this paper we have suggested a family of estimators of the population mean using auxiliary information in sample surveys. The bias and mean squared error of the proposed class of estimators have been obtained under large sample approximation. We have derived the conditions for the parameters under which the proposed class of estimators has smaller mean squared error than the sample mean, ratio, product, regression estimator and the two parameter ratio-product-ratio estimators envisaged by Chami et al (2012). An empirical study is carried out to demonstrate the performance of the proposed class of estimators over other existing estimators.


2016 ◽  
Vol 12 (2) ◽  
pp. 5-39 ◽  
Author(s):  
S. K. Pal ◽  
H. P. Singh

Abstract In surveys covering human populations it is observed that information in most cases are not obtained at the first attempt even after some callbacks. Such problems come under the category of non-response. Surveys suffer with non-response in various ways. It depends on the nature of required information, either surveys is concerned with general or sensitive issues of a society. Hansen and Hurwitz (1946) have considered the problem of non-response while estimating the population mean by taking a subsample from the non-respondent group with the help of extra efforts and an estimator was suggested by combining the information available from the response and nonresponse groups. We also mention that in survey sampling auxiliary information is commonly used to improve the performance of an estimator of a quantity of interest. For estimating the population mean using auxiliary information in presence of non-response has been discussed by various authors. In this paper, we have developed estimators for estimating the population mean of the variable under interest when there is non-response error in the study as well as in the auxiliary variable. We have studied properties of the suggested estimators under large sample approximation. Comparison of the suggested estimators with usual unbiased estimator reported by Hansen and Hurwitz (1946) and the ratio estimator due to Rao (1986) have been made. The results obtained are illustrated with aid of an empirical study.


2017 ◽  
Vol 1 ◽  
pp. 1-14
Author(s):  
Subramani Jambulingam ◽  
Ajith S. Master

Introduction: In sampling theory, different procedures are used to obtain the efficient estimator of the population mean. The commonly used method is to obtain the estimator of the population mean is simple random sampling without replacement when there is no auxiliary variable is available. There are methods that use auxiliary information of the study characteristics. If the auxiliary variable is correlated with study variable, number of estimators are widely available in the literature.Objective: This study deals with a new ratio cum product estimator is developed for the estimation of population mean of the study variable with the known median of the auxiliary variable in simple random sampling.Materials and Methods: The bias and mean squared error of proposed estimator are derived and compared with that of the existing estimators by analytically and numerically.Results: The proposed estimator is less biased and mean squared error is less than that of the existing estimators and from the numerical study, under some known natural populations, the bias of proposed estimator is approximately zero and the mean squared error ranged from 6.83 to 66429.21 and percentage relative efficiencies ranged from 103.65 to 2858.75.Conclusion: The proposed estimator under optimum conditions is almost unbiased and performs better than all other existing estimators.Nepalese Journal of Statistics, 2017, Vol. 1, 1-14


Author(s):  
Anurag Gupta ◽  
Rajesh Tailor

This paper is an attempt to develop an estimator for finite population mean. Motivated by Kiregyera (1984), a ratio in ratio type exponential strategy is developed for estimation of population mean in double sampling for stratification. To compare with relevant considered estimators, expressions for bias and mean squared error of the developed estimator have been derived. The developed estimator has been compared with usual unbiased estimator, Ige and Tripathi (1987), ratio estimator and ratio type exponential estimator given by Tailor et al (2014) theoretically as well as empirically.


1983 ◽  
Vol 32 (1-2) ◽  
pp. 47-56 ◽  
Author(s):  
S. K. Srivastava ◽  
H. S. Jhajj

For estimating the mean of a finite population, Srivastava and Jhajj (1981) defined a broad class of estimators which we information of the sample mean as well as the sample variance of an auxiliary variable. In this paper we extend this class of estimators to the case when such information on p(> 1) auxiliary variables is available. The estimators of the class involve unknown constants whose optimum values depend on unknown population parameters. When these population parameters are replaced by their consistent estimates, the resulting estimators are shown to have the same asymptotic mean squared error. An expression by which the mean squared error of such estimators is smaller than those which use only the population means of the auxiliary variables, is obtained.


2014 ◽  
Vol 1 ◽  
pp. 15-21
Author(s):  
H.S. Jhajj ◽  
Kusam Lata

Using auxiliary information, a family of difference-cum-exponential type estimators for estimating the population variance of variable under study have been proposed under double sampling design. Expressions for bias, mean squared error and its minimum values have been obtained. The comparisons have been made with the regression-type estimator by using simple random sampling at both occasions in double sampling design. It has also been shown that better estimators can be obtained from the proposed family of estimators which are more efficient than the linear regression type estimator. Results have also been illustrated numerically as well asgraphically.


PLoS ONE ◽  
2021 ◽  
Vol 16 (5) ◽  
pp. e0246947
Author(s):  
Sohail Ahmad ◽  
Muhammad Arslan ◽  
Aamna Khan ◽  
Javid Shabbir

In this paper, we propose a generalized class of exponential type estimators for estimating the finite population mean using two auxiliary attributes under simple random sampling and stratified random sampling. The bias and mean squared error (MSE) of the proposed class of estimators are derived up to first order of approximation. Both empirical study and theoretical comparisons are discussed. Four populations are used to support the theoretical findings. It is observed that the proposed class of estimators perform better as compared to all other considered estimator in simple and stratified random sampling.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Housila P. Singh ◽  
Anita Yadav

Classes of ratio-type estimators t (say) and ratio-type exponential estimators te (say) of the population mean are proposed, and their biases and mean squared errors under large sample approximation are presented. It is the class of ratio-type exponential estimators te provides estimators more efficient than the ratio-type estimators.


Sign in / Sign up

Export Citation Format

Share Document