scholarly journals Biological control of Rhizoctonia solani in tomatoes with Trichoderma harzianum mutants

Author(s):  
Jaime Montealegre ◽  
Luis Valderrama ◽  
Soledad Sánchez ◽  
Rodrigo Herrera ◽  
Ximena Besoain ◽  
...  
2020 ◽  
Vol 116 (11/12) ◽  
Author(s):  
Mapula T.P. Hlokwe ◽  
Mapotso Kena ◽  
David N. Mamphiswana

Seedling production under smallholder farming systems can be negatively affected by both abiotic and biotic factors. Seedling damping-off caused by Rhizoctonia solani is one of the major biotic factors which causes significant yield reduction. Management is mainly based on the application of synthetic fungicides and cultural practices. However, both methods have limitations which result in their inefficiency. Several studies have reported on the use of plant extracts and biological control to manage plant diseases. The aim of this study was to formulate an effective and practical approach to manage tomato seedling dampingoff using extracts of Monsonia burkeana and Moringa oleifera and a biological control agent Trichoderma harzianum. The efficacy of both extracts was investigated under laboratory conditions to determine the most suppressive concentration to R. solani growth. Methanolic extracts from both plants significantly suppressed pathogen growth at different concentrations. M. burkeana significantly reduced R. solani growth at 8 g/mL (71%) relative to control whilst Moringa oleifera extract reduced pathogen growth by 60% at a concentration of 6 g/mL. The highest suppressive concentrations were further evaluated under greenhouse conditions to test their efficacy on seedling damping-off. In damping-off treatments, both plant extracts and T. harzianum also significantly reduced (p=0.5) pre- and post-emergence dampingoff incidence. M. burkeana recorded the highest suppression at 78%, followed by M. oleifera at 64%. Trichoderma harzianum reduced incidence of damping-off by 60% and this was higher than both plant extract treatments.


2021 ◽  
Vol 735 (1) ◽  
pp. 012079
Author(s):  
Muneer Saeed M. Al-Baldawy ◽  
Ahed A A H Matloob ◽  
Mohammed K. N. Almammory

1987 ◽  
Vol 33 (10) ◽  
pp. 850-856 ◽  
Author(s):  
G. Vannacci ◽  
G. E. Harman

Forty-two microorganisms were tested as biological control agents against Alternaria raphani and A. brassicicola. Tests were conducted for in vitro antagonistic ability, for ability to control the pathogens on naturally infected seeds germinated on moistened blotters, and in planting mix in growth chamber studies, and for their ability to reduce pod infection. The organisms tested were obtained from cruciferous seeds or were strains already identified as being effective against soil-borne Pythium species. The blotter test indicated that six organisms increased both the number of healthy seedlings and the number of seedlings produced from A. raphani infected radish seeds. An additional seven strains improved either germination or increased the number of healthy seedlings. Twenty-nine organisms increased the number of healthy cabbage seedlings from A. brassicicola infected seeds, but total germination was not modified by any treatment. Experiments in planting mix showed that five antagonists (Chaetomium globosum, two strains of Trichoderma harzianum, T. koningii, and Fusarium sp.) increased the number of healthy plants in both radish samples tested, while four additional antagonists provided a significant increase in only one of the samples tested. The five antagonists that consistently increased numbers of healthy radish seedlings also decreased pod infection by A. raphani. None were as effective as iprodrone, however. Several effective antagonists were found to be mycoparasitic against Alternaria spp. Some strains of Trichoderma previously found to be effective against Pythium spp. were also effective against Alternaria spp., indicating that these strains have a wide host range.


Sign in / Sign up

Export Citation Format

Share Document