scholarly journals Development of Low Profile M-Shaped Monopole Antenna for Sub 6 GHz Bluetooth, LTE, ISM, Wi-Fi and WLAN Applications

2021 ◽  
Vol 14 (6) ◽  
pp. 159-167
Keyword(s):  

A metamaterial-based monopole antenna which resonates at L (L1 and L5) and S band for the IRNSS applications is described. The antenna has a low profile and is nearly is four times smaller in size than a conventional patch antenna. The multifrequency behavior is realized using a reactively loaded structure for the monopole antenna resulting in operation at both monopole and dipole modes. The monopole resonates at S Band and the dipolar mode resonance at L5 band. The novelty of the configuration is in realizing an additional band by introducing small square slot in the loaded structure. Copper wires are used to balance the current between the two ground at the antenna and the CPW feed line. The performance of the antenna is evaluated using ANSYS HFSS.


A metamaterial-based monopole antenna which resonates at L (L1 and L5) and S band for the IRNSS applications is described. The antenna has a low profile and is nearly is four times smaller in size than a conventional patch antenna. The multifrequency behavior is realized using a reactively loaded structure for the monopole antenna resulting in operation at both monopole and dipole modes. The monopole resonates at S Band and the dipolar mode resonance at L5 band. The novelty of the configuration is in realizing an additional band by introducing small square slot in the loaded structure. Copper wires are used to balance the current between the two ground at the antenna and the CPW feed line. The performance of the antenna is evaluated using ANSYS HFSS.


Author(s):  
Zhiya Zhang ◽  
Masood Ur-Rehman ◽  
Xiaodong Yang ◽  
Erchin Serpedin ◽  
Aifeng Ren ◽  
...  

Apart from the sleeve monopole, this chapter discusses other broadband antennas as well, and the performance evaluation in terms of various measured and simulated parameters is also illustrated. This chapter will help antenna engineers get a better understanding of the antennas discussed and make a comparison with other broadband antennas. The broadband antennas that have been discussed in this chapter include: Low-profile sleeve monopole antenna, Dual-sleeve monopole antenna, Disc-conical sleeve monopole antenna, Wideband with dumbbell-shaped open sleeve antenna, Wideband unidirectional patch antenna with G-shaped strip feed, Wideband folded bowtie antenna with G-shaped strip feed and tuning stubs, Wideband bowtie antenna with inverted L-shaped coupling feed and tuning stubs.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 980
Author(s):  
Yu-Seong Choi ◽  
Jeong-Su Park ◽  
Wang-Sang Lee

This paper proposes a beam-reconfigurable antenna for unmanned aerial vehicles (UAVs) with wide beam coverage by applying beam-combining technology to multiple antennas with different beam patterns. The proposed multi-antenna system consists of a circular patch antenna and a low-profile printed meandered monopole antenna. For beam combining, a coplanar waveguide with ground (CPW-G) structure feeding network is proposed, and it consists of two input ports, a 90° hybrid coupler, a microstrip 90° phase delay line, and a single-pole double-throw (SPDT) switch. It performs the role of power distribution and phase adjustment, and synthesizes the broad-side beam of the monopole antenna and the end-fire beam of the patch antenna to form the directive broadside beams in four different directions. The proposed antenna system operates at 5–5.5 GHz which covers both UAV ground control frequencies (5.03–5.09 GHz) and UAV mission frequencies (5.091–5.150 GHz). The peak gain, total efficiency, and half-power beamwidth (HPBW) of the antenna system are approximately 5.8 dBi, 76%, 145° in the elevation plane, and 360° in the azimuth plane respectively. Its electrical size and weight are λ 0 × λ 0 × 0.21 λ 0 at 5.09 GHz and 19.2 g, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Thomas Kaufmann ◽  
Christophe Fumeaux

A low-profile monopole antenna with height belowλ0/16is proposed. The antenna is based on a square substrate-integrated cavity radiating through apertures in its four side walls. This effectively creates a small square loop of magnetic currents, which radiates omnidirectionally as an electric monopole. The antenna cavity has a side length of less thanλ0/3and thus resonates in the monomode region, in a fundamentalTM11mode. This means that the structure is robust in terms of feeding and manufacturing tolerances, as no parasitic modes can be excited. The designs of the cavity and the feed are introduced in detail. The measurement results from a manufactured prototype operating at 5.9 GHz show good agreement with simulations and validate the proposed approach.


2010 ◽  
Vol 14 ◽  
pp. 59-67
Author(s):  
Wen-Jian Liu ◽  
Qing-Xin Chu ◽  
Liang-Hua Ye
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document