scholarly journals Impact of soil and water conservation measures on sediment yield and productivity of finger millet

2020 ◽  
Vol 8 (6) ◽  
pp. 811-814
Author(s):  
Laxman Jamadar ◽  
Ashoka HG ◽  
Rajashekarappa KS ◽  
Devaraja K ◽  
Thimmegowda MN
2018 ◽  
Vol 38 ◽  
pp. 01033
Author(s):  
Wei Ying Sun ◽  
Pan Zhang ◽  
Li Li ◽  
Jiang Nan Chen

The areas with high and coarse sediment yield of the middle Yellow River is well known for its severe erosion, high sediment yields. Since 1982 when the 8 key soil and water conservation harnessing regions has been built, the ecological environment has been gradually improved and the amount of sediment and runoff entering the Yellow River has been reduced continuously. Some researchers considered that it was owing to the water and soil conservation works (WSCW), while others believed that it was caused by the rainfall variation, but this has not been quantified for the effect respectively. This paper deals with the effects of WSCW on runoff and sediment variation. The study has been carried out in the Sanchuanhe River watershed, where was listed as one of the 8 key soil and water conservation harnessing regions. The results show that the contribution rate of human activities was 80.2% after 1st harnessing stage (1970-1979), 43.0% after 2nd harnessing stage (1980-1989), in 3rd harnessing stage (1990-1996) it reached 98.4%, and was 44.8% after 4th harnessing stage (1997-2006). With regard to the influence on runoff reduction in the watershed, the contribution rate of human activities was 62.5% compared with the natural factors after 1st harnessing stage (1970-1979), 28.4% after 2nd harnessing stage (1980-1989), in 3rd harnessing stage (1990-1996) it reached 69.6%, and was 37.0% after 4th harnessing stage (1997-2006). The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. This study suggests that a combination of human activities and rainfall variation effectively reduces runoff and sediment delivery of the Loess Plateau. Generally The runoff reduction and contribution of rainfall variation to runoff reduction in this area were as large as human activities. After many years' harnessing the great benefit have been obtained in water and soil loss control in this watershed.


Sign in / Sign up

Export Citation Format

Share Document