scholarly journals Effect of integrated use of biochar and organic amendments on soil properties and crop yield

2020 ◽  
Vol 8 (6) ◽  
pp. 1176-1179
Author(s):  
Shubham Chadha ◽  
Peeyush Sharma ◽  
Vikas Abrol ◽  
KR Sharma ◽  
Vikas Sharma ◽  
...  
Author(s):  
Michael B. Farrar ◽  
Helen M. Wallace ◽  
Cheng-Yuan Xu ◽  
Stephen Joseph ◽  
Peter K. Dunn ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


2012 ◽  
Vol 103 ◽  
pp. 100-104 ◽  
Author(s):  
P.K. Singh ◽  
P.B. Deshbhratar ◽  
D.S. Ramteke

2020 ◽  
pp. 39-55
Author(s):  
Shazia Ramzan ◽  
Ifra Ashraf ◽  
Tahir Ali ◽  
Tabasum Rasool ◽  
Pervez Ahmad ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 759
Author(s):  
Diego Baragaño ◽  
José Luis R. Gallego ◽  
Gaspar Baleriola ◽  
Rubén Forján

The demand for soils for recreational uses, gardening, or others in urban and periurban areas is increasing, and thus the presence of polluted technosols in these areas requires nature-based in situ remediation technologies. In this context, the capacity of three amendments, namely zero valent iron nanoparticles (nZVI), compost and a mixture of compost and biochar, to immobilise As in a polluted technosol simultaneously cultivated with Lolium perenne L. were tested and compared. The characteristics of the soil were comprehensively characterised by chemical and X-ray analysis to determine As contents, distribution, and mineralogy. As mobility was evaluated by the RBA methodology and then potential human health risks, both carcinogenic and non-carcinogenic, were assessed in all treatments. The nZVI treatment reduced risks due to the As immobilisation obtained (41% As decrease, RBA test), whereas the organic amendments did not imply any significant reduction of the RBA values. As to soil properties, the organic treatments applied lowered the pH values, increasing cation exchange capacity, and carbon and nutrient contents. To determine impacts over plant production, fresh biomass, As, Ca, Fe, K, Mg, Na and P were measured in Lolium under the different treatments. Notably, organic amendments improved As extraction by plants (57% increase), as well as fresh biomass (56% increase). On the contrary, nZVI diminished As extraction (65% decrease) and promoted a fresh biomass decrease of 57% due to nutrients immobilisation (61% decrease of P in plants tissues).


Sign in / Sign up

Export Citation Format

Share Document