scholarly journals Measurements of groomed heavy-flavour jet substructure with ALICE

2021 ◽  
Author(s):  
Vit Kucera ◽  
Keyword(s):  
2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Garvita Agarwal ◽  
Lauren Hay ◽  
Ia Iashvili ◽  
Benjamin Mannix ◽  
Christine McLean ◽  
...  

Abstract A framework is presented to extract and understand decision-making information from a deep neural network (DNN) classifier of jet substructure tagging techniques. The general method studied is to provide expert variables that augment inputs (“eXpert AUGmented” variables, or XAUG variables), then apply layerwise relevance propagation (LRP) to networks both with and without XAUG variables. The XAUG variables are concatenated with the intermediate layers after network-specific operations (such as convolution or recurrence), and used in the final layers of the network. The results of comparing networks with and without the addition of XAUG variables show that XAUG variables can be used to interpret classifier behavior, increase discrimination ability when combined with low-level features, and in some cases capture the behavior of the classifier completely. The LRP technique can be used to find relevant information the network is using, and when combined with the XAUG variables, can be used to rank features, allowing one to find a reduced set of features that capture part of the network performance. In the studies presented, adding XAUG variables to low-level DNNs increased the efficiency of classifiers by as much as 30-40%. In addition to performance improvements, an approach to quantify numerical uncertainties in the training of these DNNs is presented.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract This paper presents a search for new heavy particles decaying into a pair of top quarks using 139 fb−1 of proton-proton collision data recorded at a centre-of-mass energy of $$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the Large Hadron Collider. The search is performed using events consistent with pair production of high-transverse-momentum top quarks and their subsequent decays into the fully hadronic final states. The analysis is optimized for resonances decaying into a $$ t\overline{t} $$ t t ¯ pair with mass above 1.4 TeV, exploiting a dedicated multivariate technique with jet substructure to identify hadronically decaying top quarks using large-radius jets and evaluating the background expectation from data. No significant deviation from the background prediction is observed. Limits are set on the production cross-section times branching fraction for the new Z′ boson in a topcolor-assisted-technicolor model. The Z′ boson masses below 3.9 and 4.7 TeV are excluded at 95% confidence level for the decay widths of 1% and 3%, respectively.


2016 ◽  
Vol 93 (9) ◽  
Author(s):  
Pierre Baldi ◽  
Kevin Bauer ◽  
Clara Eng ◽  
Peter Sadowski ◽  
Daniel Whiteson

2014 ◽  
Vol 2014 (11) ◽  
Author(s):  
Matthew Baumgart ◽  
Adam K. Leibovich ◽  
Thomas Mehen ◽  
Ira Z. Rothstein

Author(s):  
Simone Marzani ◽  
Gregory Soyez ◽  
Michael Spannowsky
Keyword(s):  

2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Deepak Kar ◽  
Sukanya Sinha

Semi-visible jets arise in strongly interacting dark sectors, where parton evolution includes dark sector emissions, resulting in jets overlapping with missing transverse momentum. The implementation of semi-visible jets is done using the Pythia Hidden valley module to duplicate the QCD sector showering. In this work, several jet substructure observables have been examined to compare semi-visible jets (signal) and light quark/gluon jets (background). These comparisons were performed using different dark hadron fractions in the semi-visible jets. The extreme scenarios where signal consists either of entirely dark hadrons or visible hadrons offers a chance to understand the effect of the specific dark shower model employed in these comparisons. We attempt to decouple the behaviour of jet-substructure observables due to inherent semi-visible jet properties, from model dependence owing to the existence of only one dark shower model as mentioned above.


Sign in / Sign up

Export Citation Format

Share Document