scholarly journals Revealing G150.3+4.5 as a dynamically young supernova remnant with gamma-ray data

2021 ◽  
Author(s):  
Justine Devin
2017 ◽  
Vol 12 (S331) ◽  
pp. 157-163 ◽  
Author(s):  
Roland Diehl

AbstractGamma ray lines are expected to be emitted as part of the afterglow of supernova explosions, because radioactive decay of freshly synthesised nuclei occurs. Significant radioactive gamma ray line emission is expected from56Ni and44Ti decay on time scales of the initial explosion (56Ni, τ ~days) and the young supernova remnant (44Ti,τ ~90 years). Less specific, and rather informative for the supernova population as a whole, are lessons from longer lived isotopes such as26Al and60Fe. From isotopes of elements heavier than iron group elements, any interesting gamma-ray line emission is too faint to be observable. Measurements with space-based gamma-ray telescopes have obtained interesting gamma ray line emissions from two core collapse events, Cas A and SN1987A, and one thermonuclear event, SN2014J. We discuss INTEGRAL data from all above isotopes, including all line and continuum signatures from these two objects, and the surveys for more supernovae, that have been performed by gamma ray spectrometry. Our objective here is to illustrate what can be learned from gamma-ray line emission properties about the explosions and their astrophysics.


2010 ◽  
Vol 710 (1) ◽  
pp. L92-L97 ◽  
Author(s):  
A. A. Abdo ◽  
M. Ackermann ◽  
M. Ajello ◽  
A. Allafort ◽  
L. Baldini ◽  
...  

2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


1998 ◽  
Vol 13 (16) ◽  
pp. 1253-1264 ◽  
Author(s):  
LUIS P. NEIRA CERVILLERA ◽  
ROBERTO O. AQUILANO ◽  
HECTOR VUCETICH

In this letter we present a general relativistic star with strange matter to explain in a young supernova remnant the radial millisecond oscillations. The results confirm previous conclusions.


1997 ◽  
Author(s):  
D. Bhattacharya ◽  
A. Akyüz ◽  
G. Case ◽  
D. Dixon ◽  
A. Zych

2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


2009 ◽  
Vol 692 (2) ◽  
pp. 1500-1505 ◽  
Author(s):  
F. Aharonian ◽  
A. G. Akhperjanian ◽  
U. Barres de Almeida ◽  
A. R. Bazer-Bachi ◽  
B. Behera ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document