scholarly journals Fermi-LAT and WMAP observations of the supernova remnant Puppis A

2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).

2020 ◽  
Vol 497 (1) ◽  
pp. 988-1000 ◽  
Author(s):  
D M Worrall ◽  
M Birkinshaw ◽  
H L Marshall ◽  
D A Schwartz ◽  
A Siemiginowska ◽  
...  

ABSTRACT Despite the fact that kpc-scale inverse-Compton (iC) scattering of cosmic microwave background (CMB) photons into the X-ray band is mandated, proof of detection in resolved quasar jets is often insecure. High redshift provides favourable conditions due to the increased energy density of the CMB, and it allows constraints to be placed on the radio synchrotron-emitting electron component at high energies that are otherwise inaccessible. We present new X-ray, optical, and radio results from Chandra, HST, and the VLA for the core and resolved jet in the z = 3.69 quasar PKS J1421−0643. The X-ray jet extends for about 4.5 arcsec (32 kpc projected length). The jet’s radio spectrum is abnormally steep and consistent with electrons being accelerated to a maximum Lorentz factor of about 5000. Results argue in favour of the detection of iC X-rays for modest magnetic field strength of a few nT, Doppler factor of about 4, and viewing angle of about 15°, and predict the jet to be largely invisible in most other spectral bands including the far- and mid-infrared and high-energy gamma-ray. The jet power is estimated to be about 3 × 1046 erg s−1 which is of order a tenth of the quasar bolometric power, for an electron–positron jet. The jet radiative power is only about 0.07 per cent of the jet power, with a smaller radiated power ratio if the jet contains heavy particles, so most of the jet power is available for heating the intergalactic medium.


2021 ◽  
Vol 502 (1) ◽  
pp. 472-477
Author(s):  
M Araya ◽  
C Herrera

ABSTRACT CTB 80 (G69.0+2.7) is a relatively old (50–80 kyr) supernova remnant (SNR) with a complex radio morphology showing three extended radio arms and a radio and X-ray nebula near the location of the pulsar PSR B1951+32. We report on a study of the GeV emission in the region of CTB 80 with Fermi-Large Area Telescope data. An extended source with a size of 1.3°, matching the size of the infrared shell associated to the SNR, was discovered. The GeV emission, detected up to an energy of ∼20 GeV, is more significant at the location of the northern radio arm where previous observations imply that the SNR shock is interacting with ambient material. Both hadronic and leptonic scenarios can reproduce the multiwavelength data reasonably well. The hadronic cosmic ray energy density required is considerably larger than the local Galactic value and the gamma-ray leptonic emission is mainly due to bremsstrahlung interactions. We conclude that GeV particles are still trapped or accelerated by the SNR producing the observed high-energy emission when interacting with ambient material.


2004 ◽  
Vol 218 ◽  
pp. 407-414
Author(s):  
G. P. Rowell

I review the present status of ground-based γ-ray astronomy, concentrating on the population of Galactic TeV sources. A number of new telescope systems are now being completed, and promise to yield exciting new discoveries, expanding rapidly the number of sources. The TeV Galactic sources today include a number of plerions, shell-type supernova remnants, an X-ray binary, and also one unidentified candidate. Their present status, and our understanding of their TeV γ-ray emission processes are summarized and some motivation driving development of the field is outlined.


2020 ◽  
Vol 635 ◽  
pp. A40
Author(s):  
V. H. M. Phan ◽  
S. Gabici ◽  
G. Morlino ◽  
R. Terrier ◽  
J. Vink ◽  
...  

Context. Supernova remnants interacting with molecular clouds are ideal laboratories to study the acceleration of particles at shock waves and their transport and interactions in the surrounding interstellar medium. Aims. Here, we focus on the supernova remnant W28, which over the years has been observed in all energy domains from radio waves to very-high-energy gamma rays. The bright gamma-ray emission detected from molecular clouds located in its vicinity revealed the presence of accelerated GeV and TeV particles in the region. An enhanced ionization rate has also been measured by means of millimeter observations, but such observations alone cannot tell us whether the enhancement is due to low-energy (MeV) cosmic rays (either protons or electrons) or the X-ray photons emitted by the shocked gas. The goal of this study is to determine the origin of the enhanced ionization rate and to infer from multiwavelength observations the spectrum of cosmic rays accelerated at the supernova remnant shock in an unprecedented range spanning from MeV to multi-TeV particle energies. Methods. We developed a model to describe the transport of X-ray photons into the molecular cloud, and we fitted the radio, millimeter, and gamma-ray data to derive the spectrum of the radiating particles. Results. The contribution from X-ray photons to the enhanced ionization rate is negligible, and therefore the ionization must be due to cosmic rays. Even though we cannot exclude a contribution to the ionization rate coming from cosmic-ray electrons, we show that a scenario where cosmic-ray protons explain both the gamma-ray flux and the enhanced ionization rate provides the most natural fit to multiwavelength data. This strongly suggests that the intensity of CR protons is enhanced in the region for particle energies in a very broad range covering almost six orders of magnitude: from ≲100 MeV up to several tens of TeV.


Author(s):  
Yi Xing ◽  
Zhongxiang Wang ◽  
Xiao Zhang ◽  
Yang Chen

Abstract The data from the Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope have recently been updated. Thus we re-analyze the LAT data for the supernova remnant (SNR) SN 1006. Two parts of γ-ray emission from the region are clearly resolved, which correspond to the northeast (NE) and southwest (SW) limbs of the SNR. The former has been detected in the previous LAT data (Xing et al. 2016, ApJ, 823, 44), but the latter is newly detected in this work. The detections of the two limbs are at a ∼4σ significance level, and the spectral results for the NE limb are consistent with those obtained in previous detection analyses. We construct the broadband spectral energy distribution (SED) for the SW limb. Different scenarios are considered for its SED in γ-ray energies. We conclude that, very similarly in the case of the NE limb, the high-energy and very high-energy emissions from the SW limb is likely dominated by the leptonic process, in which high-energy electrons accelerated from the shell region of the SNR inverse-Compton scatter background photons to γ-rays.


2021 ◽  
Author(s):  
Roland Crocker ◽  
Oscar Macias ◽  
Dougal Mackey ◽  
Mark Krumholz ◽  
Shin'ichiro Ando ◽  
...  

Abstract The Fermi Bubbles are giant, γ-ray emitting lobes emanating from the nucleus of the Milky Way [1, 2] discovered in ∼1-100 GeV data collected by the Large Area Telescope on board the Fermi Gamma-Ray Space Telescope [3]. Previous work [4] has revealed substructure within the Fermi Bubbles that has been interpreted as a signature of collimated outflows from the Galaxy’s super-massive black hole. Here we show that much of the γ-ray emission associated to the brightest region of substructure – the so-called cocoon – is actually due to the Sagittarius dwarf spheroidal (Sgr dSph) galaxy. This large Milky Way satellite is viewed through the Fermi Bubbles from the position of the Solar System. As a tidally and ram-pressure stripped remnant, the Sgr dSph has no on-going star formation, but we demonstrate that its γ-ray signal is naturally explained by inverse Compton scattering of cosmic microwave back-ground photons by high-energy electron-positron pairs injected by the dwarf’s millisecond pulsar (MSP) population, combined with these objects’ magnetospheric emission. This finding suggests that MSPs likely produce significant γ-ray emission amongst old stellar populations, potentially confounding indirect dark matter searches in regions such as the Galactic Centre, the Andromeda galaxy, and other massive Milky Way dwarf spheroidals.


2019 ◽  
Vol 489 (3) ◽  
pp. 4300-4310 ◽  
Author(s):  
A Sezer ◽  
T Ergin ◽  
R Yamazaki ◽  
H Sano ◽  
Y Fukui

ABSTRACT We present the results from the Suzaku X-ray Imaging Spectrometer observation of the mixed-morphology supernova remnant (SNR) HB9 (G160.9+2.6). We discovered recombining plasma (RP) in the western Suzaku observation region and the spectra here are well described by a model having collisional ionization equilibrium (CIE) and RP components. On the other hand, the X-ray spectra from the eastern Suzaku observation region are best reproduced by the CIE and non-equilibrium ionization model. We discuss possible scenarios to explain the origin of the RP emission based on the observational properties and concluded that the rarefaction scenario is a possible explanation for the existence of RP. In addition, the gamma-ray emission morphology and spectrum within the energy range of 0.2–300 GeV are investigated using 10 yr of data from the Fermi Large Area Telescope (LAT). The gamma-ray morphology of HB9 is best described by the spatial template of radio continuum emission. The spectrum is well fit to a log-parabola function and its detection significance was found to be 25σ. Moreover, a new gamma-ray point source located just outside the south-east region of the SNR’s shell was detected with a significance of 6σ. We also investigated the archival H i and CO data and detected an expanding shell structure in the velocity range of $-10.5$ and $+1.8$ km s−1 that is coinciding with a region of gamma-ray enhancement at the southern rim of the HB9 shell.


1995 ◽  
Vol 151 ◽  
pp. 78-79
Author(s):  
I.Yu. Alekseev ◽  
N.N. Chalenko ◽  
V.P. Fomin ◽  
R.E. Gershberg ◽  
O.R. Kalekin ◽  
...  

During the 1994 coordinated observations of the red dwarf flare star EV Lac, the star was monitored in the very high energy (VHE) γ-ray range around 1012 eV with the Crimean ground-based γ-ray telescope GT-48. This telescope consists of two identical optical systems (Vladimirsky et al. 1994) which were directed in parallel on EV Lac.The detection principle of the VHE γ-rays is based on the Čerenkov radiation emitted by relativistic electrons and positrons. The latter are generated in the interaction of the γ-rays with nuclei in the Earth’s atmosphere that leads to an appearance of a shower of charged particles and γ-quanta. The duration of the Cherenkov radiation flash is very short, just about a few nanoseconds. The angular size of the shower is ∼ 1°. To detect such flashes we use an optical system with large area mirrors and a set of 37 photomultipliers (PMs) in the focal plane. Using the information from these PMs which are spaced hexagonally and correspond to a field of view of 2°.6 on the sky, we can obtain the image of an optical flash. The electronic device permits us to detect nanosecond flashes (40 ns exposure time and 12 μs readout dead-time).


2020 ◽  
Vol 493 (2) ◽  
pp. 2438-2451
Author(s):  
B Arsioli ◽  
Y-L Chang ◽  
B Musiimenta

ABSTRACT This paper presents the results of a γ-ray likelihood analysis over all the extreme and high synchrotron peak blazars (EHSP and HSP) from the 3HSP catalogue. We investigate 2013 multifrequency positions under the eyes of Fermi Large Area Telescope, considering 11 yr of observations in the energy range between 500 MeV and 500 GeV, which results in 1160 γ-ray signatures detected down to the TS=9 threshold. The detections include 235 additional sources concerning the Fermi Large Area Telescope Fourth Source Catalog (4FGL), all confirmed via high-energy TS (Test Statistic) maps, and represent an improvement of ∼25 per cent for the number of EHSP and HSP currently described in γ-rays. We build the γ-ray spectral energy distribution (SED) for all the 1160 2BIGB sources, plot the corresponding γ-ray logN−logS, and measure their total contribution to the extragalactic gamma-ray background, which reaches up to ∼33 per cent at 100 GeV. Also, we show that the γ-ray detectability improves according to the synchrotron peak flux as represented by the figure of merit parameter, and note that the search for TeV peaked blazars may benefit from considering HSP and EHSP as a whole, instead of EHSPs only. The 2BIGB acronym stands for ‘Second Brazil-ICRANet Gamma-ray Blazars’ catalogue, and all the broad-band models and SED data points will be available on public data repositories (OpenUniverse, GitHub, and Brazilian Science Data Center-BSDC).


1998 ◽  
Vol 188 ◽  
pp. 117-120
Author(s):  
R. Petre ◽  
J. Keohane ◽  
U. Hwang ◽  
G. Allen ◽  
E. Gotthelf

The suggestion that the shocks of supernova remnants (SNR's) are cosmic ray acceleration sites dates back more than 40 years. While observations of nonthermal radio emission from SNR shells indicate the ubiquity of GeV cosmic ray production, there is still theoretical debate about whether SNR shocks accelerate particles up to the well-known “knee” in the primary cosmic ray spectrum at ~3,000 TeV. Recent X-ray observations of SN1006 and other SNR's may have provided the missing observational link between SNR shocks and high energy cosmic ray acceleration. We discuss these observations and their interpretation, and summarize our ongoing efforts to find evidence from X-ray observations of cosmic ray acceleration in the shells of other SNR's.


Sign in / Sign up

Export Citation Format

Share Document