scholarly journals Self-testing of a single quantum device under computational assumptions

Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 544
Author(s):  
Tony Metger ◽  
Thomas Vidick

Self-testing is a method to characterise an arbitrary quantum system based only on its classical input-output correlations, and plays an important role in device-independent quantum information processing as well as quantum complexity theory. Prior works on self-testing require the assumption that the system's state is shared among multiple parties that only perform local measurements and cannot communicate. Here, we replace the setting of multiple non-communicating parties, which is difficult to enforce in practice, by a single computationally bounded party. Specifically, we construct a protocol that allows a classical verifier to robustly certify that a single computationally bounded quantum device must have prepared a Bell pair and performed single-qubit measurements on it, up to a change of basis applied to both the device's state and measurements. This means that under computational assumptions, the verifier is able to certify the presence of entanglement, a property usually closely associated with two separated subsystems, inside a single quantum device. To achieve this, we build on techniques first introduced by Brakerski et al. (2018) and Mahadev (2018) which allow a classical verifier to constrain the actions of a quantum device assuming the device does not break post-quantum cryptography.

2005 ◽  
Vol 03 (01) ◽  
pp. 31-39 ◽  
Author(s):  
JOZEF GRUSKA

Quantum complexity theory is a powerful tool that provides deep insights into Quantum Information Processing (QIP) and aims to do that also for Quantum Mechanics (QM), in general. This paper is a short review of the main and new motivations, goals, tools, results and challenges of quantum complexity, oriented mainly for pedestrians.


Author(s):  
Samad Khabbazi Oskouei ◽  
Stefano Mancini ◽  
Mark M. Wilde

In this paper, we prove a quantum union bound that is relevant when performing a sequence of binary-outcome quantum measurements on a quantum state. The quantum union bound proved here involves a tunable parameter that can be optimized, and this tunable parameter plays a similar role to a parameter involved in the Hayashi–Nagaoka inequality (Hayashi & Nagaoka 2003 IEEE Trans. Inf. Theory 49 , 1753–1768. ( doi:10.1109/TIT.2003.813556 )), used often in quantum information theory when analysing the error probability of a square-root measurement. An advantage of the proof delivered here is that it is elementary, relying only on basic properties of projectors, Pythagoras' theorem, and the Cauchy–Schwarz inequality. As a non-trivial application of our quantum union bound, we prove that a sequential decoding strategy for classical communication over a quantum channel achieves a lower bound on the channel's second-order coding rate. This demonstrates the advantage of our quantum union bound in the non-asymptotic regime, in which a communication channel is called a finite number of times. We expect that the bound will find a range of applications in quantum communication theory, quantum algorithms and quantum complexity theory.


2018 ◽  
Vol 182 ◽  
pp. 02014
Author(s):  
Vesna Berec

To utilize a scalable quantum network and perform a quantum state transfer within distant arbitrary nodes, coherence and control of the dynamics of couplings between the information units must be achieved as a prerequisite ingredient for quantum information processing within a hierarchical structure. Graph theoretic approach provides a powerful tool for the characterization of quantum networks with non-trivial clustering properties. By encoding the topological features of the underlying quantum graphs, relations between the quantum complexity measures are presented revealing the intricate links between a quantum and a classical networks dynamics.


2011 ◽  
Vol 25 (16) ◽  
pp. 2115-2134 ◽  
Author(s):  
ROBERT JOYNT ◽  
DONG ZHOU ◽  
QIANG-HUA WANG

We present a general formalism for the dissipative dynamics of an arbitrary quantum system in the presence of a classical stochastic process. It is applicable to a wide range of physical situations, and in particular it can be used for qubit arrays in the presence of classical two-level systems (TLS). In this formalism, all decoherence rates appear as eigenvalues of an evolution matrix. Thus the method is linear, and the close analogy to Hamiltonian systems opens up a toolbox of well-developed methods such as perturbation theory and mean-field theory. We apply the method to the problem of a single qubit in the presence of TLS that give rise to pure dephasing 1/f noise and solve this problem exactly.


Sign in / Sign up

Export Citation Format

Share Document