scholarly journals Hv-Field of Fractions and Hv-Quotient Rings

2021 ◽  
Vol 27 (1) ◽  
pp. 75-89
Author(s):  
Mansour Ghadiri

A larger class of algebraic hyperstructures satisfying the ring (field)-likeaxioms is the class of Hv-rings (Hv-fields). In this paper, we define the Hv-integraldomain and introduce the Hv-field of fractions of an Hv-integral domain. Also, theHv-quotient ring and some relative theorems are presented. Finally, some interestingresults about the Hv-rings of fractions, Hv-quotient rings and the relations betweenthem are proved.

1972 ◽  
Vol 24 (5) ◽  
pp. 983-988 ◽  
Author(s):  
Raymond A. Beauregard

In this paper we continue our investigation of the class of right LCM domains which was introduced in [2]. A right LCM domain is an (not necessarily commutative) integral domain with unity in which the intersection of any two principal right ideals is again principal. In this note we study the right quotient rings of such a ring. In Section 1 we describe some of the characteristic properties of right quotient monoids with respect to which quotient rings are formed. Three particular types of quotient rings are described in Section 2. In Section 3 we relate the right ideals of a ring to those of its quotient ring.


2016 ◽  
Vol 15 (08) ◽  
pp. 1650149 ◽  
Author(s):  
Said El Baghdadi ◽  
Marco Fontana ◽  
Muhammad Zafrullah

Let [Formula: see text] be an integral domain with quotient field [Formula: see text]. Call an overring [Formula: see text] of [Formula: see text] a subring of [Formula: see text] containing [Formula: see text] as a subring. A family [Formula: see text] of overrings of [Formula: see text] is called a defining family of [Formula: see text], if [Formula: see text]. Call an overring [Formula: see text] a sublocalization of [Formula: see text], if [Formula: see text] has a defining family consisting of rings of fractions of [Formula: see text]. Sublocalizations and their intersections exhibit interesting examples of semistar or star operations [D. D. Anderson, Star operations induced by overrings, Comm. Algebra 16 (1988) 2535–2553]. We show as a consequence of our work that domains that are locally finite intersections of Prüfer [Formula: see text]-multiplication (respectively, Mori) sublocalizations turn out to be Prüfer [Formula: see text]-multiplication domains (PvMDs) (respectively, Mori); in particular, for the Mori domain case, we reobtain a special case of Théorème 1 of [J. Querré, Intersections d’anneaux intègers, J. Algebra 43 (1976) 55–60] and Proposition 3.2 of [N. Dessagnes, Intersections d’anneaux de Mori — exemples, Port. Math. 44 (1987) 379–392]. We also show that, more than the finite character of the defining family, it is the finite character of the star operation induced by the defining family that causes the interesting results. As a particular case of this theory, we provide a purely algebraic approach for characterizing P vMDs as a subclass of the class of essential domains (see also Theorem 2.4 of [C. A. Finocchiaro and F. Tartarone, On a topological characterization of Prüfer [Formula: see text]-multiplication domains among essential domains, preprint (2014), arXiv:1410.4037]).


1971 ◽  
Vol 14 (4) ◽  
pp. 517-529 ◽  
Author(s):  
John K. Luedeman

AbstractSanderson (Canad. Math. Bull., 8 (1965), 505–513), considering a nonempty collection Σ of left ideals of a ring R, with unity, defined the concepts of “Σ-injective module” and “Σ-essential extension” for unital left modules. Letting Σ be an idempotent topologizing set (called a σ-set below) Σanderson proved the existence of a “Σ-injective hull” for any unital left module and constructed an Utumi Σ-quotient ring of R as the bicommutant of the Σ-injective hull of RR. In this paper, we extend the concepts of “Σinjective module”, “Σ-essentialextension”, and “Σ-injective hull” to modules over arbitrary rings. An overring Σ of a ring R is a Johnson (Utumi) left Σ-quotient ring of R if RR is Σ-essential (Σ-dense) in RS. The maximal Johnson and Utumi Σ-quotient rings of R are constructed similar to the original method of Johnson, and conditions are given to insure their equality. The maximal Utumi Σquotient ring U of R is shown to be the bicommutant of the Σ-injective hull of RR when R has unity. We also obtain a σ-set UΣ of left ideals of U, generated by Σ, and prove that Uis its own maximal Utumi UΣ-quotient ring. A Σ-singular left ideal ZΣ(R) of R is defined and U is shown to be UΣ-injective when Z Σ(R) = 0. The maximal Utumi Σ-quotient rings of matrix rings and direct products of rings are discussed, and the quotient rings of this paper are compared with these of Gabriel (Bull. Soc. Math. France, 90 (1962), 323–448) and Mewborn (Duke Math. J. 35 (1968), 575–580). Our results reduce to those of Johnson and Utumi when 1 ∊ R and Σ is taken to be the set of all left ideals of R.


1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


1973 ◽  
Vol 25 (3) ◽  
pp. 627-645 ◽  
Author(s):  
Stuart A. Steinberg

An f-ring R with zero right annihilator is called a qf-ring if its Utumi maximal left quotient ring Q = Q(R) can be made into and f-ring extension of R. F. W. Anderson [2, Theorem 3.1] has characterized unital qf-rings with the following conditions: For each q ∈ Q and for each pair d1, d2 ∈ R+ such that diq ∈ R(i) (d1q)+ Λ (d2q)- = 0, and(ii) d1 Λ d2 = 0 implies (d1q)+ Λ d2 = 0.We remark that this characterization holds even when R does not have an identity element.


1977 ◽  
Vol 24 (3) ◽  
pp. 339-349 ◽  
Author(s):  
John Hannah

AbstractSuppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.


1977 ◽  
Vol 29 (5) ◽  
pp. 914-927 ◽  
Author(s):  
John Chuchel ◽  
Norman Eggert

It is well known that the complete quotient ring of a Noetherian ring coincides with its classical quotient ring, as shown in Akiba [1]. But in general, the structure of the complete quotient ring of a given ring is largely unknown. This paper investigates the structure of the complete quotient ring of certain Prüfer rings. Boisen and Larsen [2] considered conditions under which a Prüfer ring is a homomorphic image of a Prüfer domain and the properties inherited from the domain. We restrict our investigation primarily to homomorphic images of semilocal Prüfer domains. We characterize the complete quotient ring of a semilocal Prüfer domain in terms of complete quotient rings of local rings and a completion of a topological ring.


2016 ◽  
Vol 95 (1) ◽  
pp. 14-21 ◽  
Author(s):  
MABROUK BEN NASR ◽  
NABIL ZEIDI

Let $R\subset S$ be an extension of integral domains, with $R^{\ast }$ the integral closure of $R$ in $S$. We study the set of intermediate rings between $R$ and $S$. We establish several necessary and sufficient conditions for which every ring contained between $R$ and $S$ compares with $R^{\ast }$ under inclusion. This answers a key question that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J. Math. Kyoto Univ.7 (1967), 133–150].


2006 ◽  
Vol 13 (03) ◽  
pp. 513-523 ◽  
Author(s):  
Yong Uk Cho ◽  
Nam Kyun Kim ◽  
Mi Hyang Kwon ◽  
Yang Lee

We study classical right quotient rings and ordinary extensions of various kinds of 2-primal rings, constructing examples for situations that raise naturally in the process. We show: (1) Let R be a right Ore ring with P(R) left T-nilpotent. Then Q is a 2-primal local ring with P(Q)=J(Q) = {ab-1 ∈ Q | a ∈ P(R), b ∈ C(0)} if and only if C(0)=C(P(R))=R∖P(R), where Q is the classical right quotient ring of R. (2) Let R be a right Ore ring. Then R[x] is a domain whose classical right quotient ring is a division ring if and only if R is a right p.p. ring with C(P(R))=R∖P(R). As a consequence, if R is a right Noetherian ring, then R[[x]] is a domain whose classical right quotient ring is a division ring if and only if R[x] is a domain whose classical right quotient ring is a division ring if and only if R is a right p.p. ring with C(P(R))=R∖P(R).


1971 ◽  
Vol 23 (2) ◽  
pp. 345-354 ◽  
Author(s):  
Vasily C. Cateforis ◽  
Francis L. Sandomierski

In this paper we generalize to modules of singular submodule zero over a ring of singular ideal zero some of the results, which are well known for torsion-free modules over a commutative integral domain, e.g. [2, Chapter VII, p. 127], or over a ring, which possesses a classical right quotient ring, e.g. [13, § 5].Let R be an associative ring with 1 and let M be a unitary right R-module, the latter fact denoted by MR. A submodule NR of MR is large in MR (MR is an essential extension of NR) if NR intersects non-trivially every non-zero submodule of MR; the notation NR ⊆′ MR is used for the statement “NR is large in MR” The singular submodule of MR, denoted Z(MR), is then defined to be the set {m ∈ M| r(m) ⊆’ RR}, where


Sign in / Sign up

Export Citation Format

Share Document