Quotient Rings of a Class of Lattice-Ordered-Rings

1973 ◽  
Vol 25 (3) ◽  
pp. 627-645 ◽  
Author(s):  
Stuart A. Steinberg

An f-ring R with zero right annihilator is called a qf-ring if its Utumi maximal left quotient ring Q = Q(R) can be made into and f-ring extension of R. F. W. Anderson [2, Theorem 3.1] has characterized unital qf-rings with the following conditions: For each q ∈ Q and for each pair d1, d2 ∈ R+ such that diq ∈ R(i) (d1q)+ Λ (d2q)- = 0, and(ii) d1 Λ d2 = 0 implies (d1q)+ Λ d2 = 0.We remark that this characterization holds even when R does not have an identity element.

1972 ◽  
Vol 24 (5) ◽  
pp. 835-850 ◽  
Author(s):  
E. P. Armendariz ◽  
Gary R. McDonald

Throughout, we assume all rings are associative with identity and all modules are unitary. See [7] for undefined terms and [3] for all homological concepts.Let R be a ring, E(R) the injective envelope of RR, and H =HomR(E(R),E(R)). Then we obtain a bimodule RE(R)H. Let Q = HomH(E(R), E(R)). Q is called the maximal left quotient ring of R. Q has the property that if p, q ∈ Q, p ≠ 0, then there exists r ∈ R such that rp ≠ 0, rq ∈ R, i.e., Q is a ring of left quotients of R.A left ideal I of R is dense if for every x,y ∈ R,x ≠ 0, there exists r ∈ R such that rx ≠ 0, ry ∈ I. An alternate description of Q is Q = {x ∈ E(RR) : (R : x) is a dense left ideal of R{, where (R : x) = {r ∈ R : rx ∈ R}.The left singular ideal of R is Zl(R) = {r ∈ R : lR(r) is an essential left ideal of R}, where lR(r) = {x ∈ R : xr = 0}. If Zl(R) = (0), then Q is a left self-injective von Neumann regular ring [7, § 4.5]. Most of the previous work on maximal left quotient rings has been done in this case.


2014 ◽  
Vol 3 (1) ◽  
pp. 17
Author(s):  
K. Jayalakshmi ◽  
G. R. Nageswari

In this paper, we prove the Common-Denominator property. If \(Q\) is Weak Fountain-Golden Left order in an assosymmetric ring \(R\), then given \(b_{1}\),..., \(b_{n} \in R\) there exist \(a\in S\), \(q_{1}\),..., \(q_{n}\in Q\) such that for every \(i = 1,...,n\), \(b_{i} = \tilde{a} q_{i}0\) and \(a \tilde{a} q_{i}=q_{i}\) and also it is shown that if \(Q\) is subring of an assosymmetric ring \(R\), (i) if $R$ is a weak Fountain-Gould left quotient ring of \(Q\), then \(R\) is a left quotient ring of \(Q\), (ii) suppose $R$ nondegenerate and coinciding with its socle, if \(Q\) is a weak Fountain-Gould left order in \(R\) then \(Q\) is a Fountain-Gould left order in \(R\), (iii) if \(R\) is also artinian then \(Q\) is a classical left order in \(R\) if and only if \(Q\) is a Fountain-Gould left order in \(R\).


1971 ◽  
Vol 14 (4) ◽  
pp. 517-529 ◽  
Author(s):  
John K. Luedeman

AbstractSanderson (Canad. Math. Bull., 8 (1965), 505–513), considering a nonempty collection Σ of left ideals of a ring R, with unity, defined the concepts of “Σ-injective module” and “Σ-essential extension” for unital left modules. Letting Σ be an idempotent topologizing set (called a σ-set below) Σanderson proved the existence of a “Σ-injective hull” for any unital left module and constructed an Utumi Σ-quotient ring of R as the bicommutant of the Σ-injective hull of RR. In this paper, we extend the concepts of “Σinjective module”, “Σ-essentialextension”, and “Σ-injective hull” to modules over arbitrary rings. An overring Σ of a ring R is a Johnson (Utumi) left Σ-quotient ring of R if RR is Σ-essential (Σ-dense) in RS. The maximal Johnson and Utumi Σ-quotient rings of R are constructed similar to the original method of Johnson, and conditions are given to insure their equality. The maximal Utumi Σquotient ring U of R is shown to be the bicommutant of the Σ-injective hull of RR when R has unity. We also obtain a σ-set UΣ of left ideals of U, generated by Σ, and prove that Uis its own maximal Utumi UΣ-quotient ring. A Σ-singular left ideal ZΣ(R) of R is defined and U is shown to be UΣ-injective when Z Σ(R) = 0. The maximal Utumi Σ-quotient rings of matrix rings and direct products of rings are discussed, and the quotient rings of this paper are compared with these of Gabriel (Bull. Soc. Math. France, 90 (1962), 323–448) and Mewborn (Duke Math. J. 35 (1968), 575–580). Our results reduce to those of Johnson and Utumi when 1 ∊ R and Σ is taken to be the set of all left ideals of R.


1971 ◽  
Vol 14 (4) ◽  
pp. 491-494 ◽  
Author(s):  
Efraim P. Armendariz

Let R be a ring with 1 and let Q denote the maximal left quotient ring of R [6]. In a recent paper [12], Wei called a (left). R-module M divisible in case HomR (Q, N)≠0 for each nonzero factor module N of M. Modifying the terminology slightly we call such an R-module a Q-divisible R-module. As shown in [12], the class D of all Q-divisible modules is closed under factor modules, extensions, and direct sums and thus is a torsion class in the sense of Dickson [5].


1984 ◽  
Vol 27 (2) ◽  
pp. 160-170
Author(s):  
Karl A. Kosler

AbstractThe purpose of this paper is to examine the relationship between the quotient problem for right noetherian nonsingular rings and the quotient problem for semicritical rings. It is shown that a right noetherian nonsingular ring R has an artinian classical quotient ring iff certain semicritical factor rings R/Ki, i = 1,…,n, possess artinian classical quotient rings and regular elements in R/Ki lift to regular elements of R for all i. If R is a two sided noetherian nonsingular ring, then the existence of an artinian classical quotient ring is equivalent to each R/Ki possessing an artinian classical quotient ring and the right Krull primes of R consisting of minimal prime ideals. If R is also weakly right ideal invariant, then the former condition is redundant. Necessary and sufficient conditions are found for a nonsingular semicritical ring to have an artinian classical quotient ring.


1977 ◽  
Vol 24 (3) ◽  
pp. 339-349 ◽  
Author(s):  
John Hannah

AbstractSuppose KG is a prime nonsingular group algebra with uniform right ideals. We show that G has no nontrivial locally finite normal subgroups. If G is soluble or residually finite, or if K has zero characteristic and G is linear, then the maximal right quotient ring of KG is simple Artinian.


1977 ◽  
Vol 29 (5) ◽  
pp. 914-927 ◽  
Author(s):  
John Chuchel ◽  
Norman Eggert

It is well known that the complete quotient ring of a Noetherian ring coincides with its classical quotient ring, as shown in Akiba [1]. But in general, the structure of the complete quotient ring of a given ring is largely unknown. This paper investigates the structure of the complete quotient ring of certain Prüfer rings. Boisen and Larsen [2] considered conditions under which a Prüfer ring is a homomorphic image of a Prüfer domain and the properties inherited from the domain. We restrict our investigation primarily to homomorphic images of semilocal Prüfer domains. We characterize the complete quotient ring of a semilocal Prüfer domain in terms of complete quotient rings of local rings and a completion of a topological ring.


2006 ◽  
Vol 13 (03) ◽  
pp. 513-523 ◽  
Author(s):  
Yong Uk Cho ◽  
Nam Kyun Kim ◽  
Mi Hyang Kwon ◽  
Yang Lee

We study classical right quotient rings and ordinary extensions of various kinds of 2-primal rings, constructing examples for situations that raise naturally in the process. We show: (1) Let R be a right Ore ring with P(R) left T-nilpotent. Then Q is a 2-primal local ring with P(Q)=J(Q) = {ab-1 ∈ Q | a ∈ P(R), b ∈ C(0)} if and only if C(0)=C(P(R))=R∖P(R), where Q is the classical right quotient ring of R. (2) Let R be a right Ore ring. Then R[x] is a domain whose classical right quotient ring is a division ring if and only if R is a right p.p. ring with C(P(R))=R∖P(R). As a consequence, if R is a right Noetherian ring, then R[[x]] is a domain whose classical right quotient ring is a division ring if and only if R[x] is a domain whose classical right quotient ring is a division ring if and only if R is a right p.p. ring with C(P(R))=R∖P(R).


1995 ◽  
Vol 18 (2) ◽  
pp. 311-316 ◽  
Author(s):  
David G. Poole ◽  
Patrick N. Stewart

An associative ringRwith identity is a generalized matrix ring with idempotent setEifEis a finite set of orthogonal idempotents ofRwhose sum is1. We show that, in the presence of certain annihilator conditions, such a ring is semiprime right Goldie if and only ifeReis semiprime right Goldie for alle∈E, and we calculate the classical right quotient ring ofR.


Sign in / Sign up

Export Citation Format

Share Document