scholarly journals Approximate accuracy of dairy cattle evaluation from multiple lactation random regression model for Polish Black-and-White cattle

2006 ◽  
Vol 15 (2) ◽  
pp. 187-193
Author(s):  
T. Strabel ◽  
J. Jamrozik
2014 ◽  
Vol 14 (1) ◽  
pp. 55-68 ◽  
Author(s):  
Ali Mohammadi ◽  
Sadegh Alijani ◽  
Hossein Daghighkia

Abstract The aim of this research was to compare different polynomial functions including Legendre polynomials (LP), Wilmink (WRR) and Ali-Schaeffer (ARR) functions, in random regression model (RRM) for estimation of genetic parameters for milk production traits of Iranian Holstein dairy cattle. For this purpose the performance records obtained from test-day (TD) regarding milk yield, fat and protein contents of the cows calving for the first time were used. The numbers of records for the above mentioned traits were 701212, 657004, and 560775, respectively. These records were collected from the years 2006 to 2010 by the National Breeding Center of Iran. The genetic parameters were estimated using Restricted Maximum Likelihood (REML) method by applying RRM. Residual variances were considered homogeneous over the lactation period. To compare the model, different criteria (-2Logl, AIC, BIC and RV) were used for considered traits. Based on the results obtained, for all traits, RRM with LP function (2,5) were chosen as the best model. Considering residual variance (RV), LP (2,2) was proved to be a model which has the lowest performance, while using -2Logl, AIC, BIC criteria, RRM with ARR function was the worst model. According to the results, it is recommended to use LP with low orders for the additive genetic effects and with more orders for the permanent environment effects in the RRM for Iranian Holstein cattle. Permanent environment variance was higher in early lactation than during lactation and additive genetic variance in the early lactation was lower than at the end of lactation. Heritability range of milk yield, fat and protein contents was estimated to be from 0.08 to 0.23, 0.05 to 0.20 and 0.08 to 0.14, respectively. Phenotypic variance of the considered traits during lactation was not constant and it was higher at the beginning and the end of lactation. The additive genetic correlation between adjacent test days was higher than between distant test days.


2014 ◽  
Vol 30 (1) ◽  
pp. 15-28 ◽  
Author(s):  
R. Mosharraf ◽  
J. Shodja ◽  
M. Bohlouli ◽  
S. Alijani ◽  
S.A. Rafat

Genetic parameters of milk, fat, and protein yields were estimated in the first lactation of Holstein dairy cattle. The records were collected during the period 2006 to 2011 and analyzed fitting the random regression model. The data included 41178, 25397 and 18716 test-day records of milk, fat and protein yields, respectively that produced by 4746, 3437 and 2525 cows respectively. Fixed effects in model included herd-year-month of test day and age-season of calving. The fixed and random regressions were modeled with normalized Legendre polynomials and (co)variance components were estimated by Bayesian method and Gibbs sampling was used to obtain posterior distributions. Estimates of heritability for milk, fat and protein yields ranged from 0.18 to 0.26; 0.06 to 0.11 and 0.09 to 0.22, respectively. Heritabilities for 305-d milk, fat and protein yields were 0.36, 0.23 and 0.29, respectively. For milk and protein yields, heritabilities were lower at the early of lactation due to the trends of lower additive genetic variance, higher permanent environmental variance. Genetic correlations for milk, fat and protein yields ranged from 0.14 to 1.00; 0.39 to 1.00 and 0.27 to 1.00, respectively. Ranges of estimated breeding values for 305-d yield of milk, fat and protein yields were from -1194.48 to 1412.44; -210.57 to 271.22 and -194.08 to 203.25, respectively. According to the results of this study, random regression model seems to be a flexible and reliable procedure for the genetic evaluation of milk production traits and it can be useful in the breeding programs for Iranian dairy cattle.


2017 ◽  
Vol 47 (5) ◽  
Author(s):  
Priscila Becker Ferreira ◽  
Paulo Roberto Nogara Rorato ◽  
Fernanda Cristina Breda ◽  
Vanessa Tomazetti Michelotti ◽  
Alexandre Pires Rosa ◽  
...  

ABSTRACT: This study aimed to test different genotypic and residual covariance matrix structures in random regression models to model the egg production of Barred Plymouth Rock and White Plymouth Rock hens aged between 5 and 12 months. In addition, we estimated broad-sense heritability, and environmental and genotypic correlations. Six random regression models were evaluated, and for each model, 12 genotypic and residual matrix structures were tested. The random regression model with linear intercept and unstructured covariance (UN) for a matrix of random effects and unstructured correlation (UNR) for residual matrix adequately model the egg production curve of hens of the two study breeds. Genotypic correlations ranged from 0.15 (between age of 5 and 12 months) to 0.99 (between age of 10 and 11 months) and increased based on the time elapsed. Egg production heritability between 5- and 12-month-old hens increased with age, varying from 0.15 to 0.51. From the age of 9 months onward, heritability was moderate with estimates of genotypic correlations higher than 90% at the age of 10, 11, and 12 months. Results suggested that selection of hens to improve egg production should commence at the ninth month of age.


Sign in / Sign up

Export Citation Format

Share Document