scholarly journals Dilatations of Linear Operators

2020 ◽  
Vol 66 (2) ◽  
pp. 209-220
Author(s):  
Yu. L. Kudryashov

The article is devoted to building various dilatations of linear operators. The explicit construction of a unitary dilation of a compression operator is considered. Then the J -unitary dilatation of a bounded operator is constructed by means of the operator knot concept of a bounded linear operator. Using the Pavlov method, we construct the self-adjoint dilatation of a bounded dissipative operator. We consider spectral and translational representations of the self-adjoint dilatation of a densely defined dissipative operator with nonempty set of regular points. Using the concept of an operator knot for a bounded operator and the Cayley transform, we introduce an operator knot for a linear operator. By means of this concept, we construct the J -self-adjoint dilatation of a densely defined operator with a regular point. We obtain conditions of isomorphism of extraneous dilations and their minimality.

2004 ◽  
Vol 2004 (50) ◽  
pp. 2695-2704
Author(s):  
Lahcène Mezrag ◽  
Abdelmoumene Tiaiba

Let0<p≤q≤+∞. LetTbe a bounded sublinear operator from a Banach spaceXinto anLp(Ω,μ)and let∇Tbe the set of all linear operators≤T. In the present paper, we will show the following. LetCbe a positive constant. For alluin∇T,Cpq(u)≤C(i.e.,uadmits a factorization of the formX→u˜Lq(Ω,μ)→MguLq(Ω,μ), whereu˜is a bounded linear operator with‖u˜‖≤C,Mguis the bounded operator of multiplication byguwhich is inBLr+(Ω,μ)(1/p=1/q+1/r),u=Mgu∘u˜andCpq(u)is the constant ofq-convexity ofu) if and only ifTadmits the same factorization; This is under the supposition that{gu}u∈∇Tis latticially bounded. Without this condition this equivalence is not true in general.


2004 ◽  
Vol 77 (1) ◽  
pp. 73-90 ◽  
Author(s):  
Khalid Latrach ◽  
J. Martin Paoli

AbstractThe purpose of this paper is to provide a detailed treatment of the behaviour of essential spectra of closed densely defined linear operators subjected to additive perturbations not necessarily belonging to any ideal of the algebra of bounded linear operators. IfAdenotes a closed densely defined linear operator on a Banach spaceX, our approach consists principally in considering the class ofA-closable operators which, regarded as operators in ℒ(XA,X) (whereXAdenotes the domain ofAequipped with the graph norm), are contained in the set ofA-Fredholm perturbations (see Definition 1.2). Our results are used to describe the essential spectra of singular neutron transport equations in bounded geometries.


2018 ◽  
Vol 25 (1) ◽  
pp. 73-76
Author(s):  
Pablo Rocha

AbstractIn this note we show that if{f\in H^{p}(\mathbb{R}^{n})\cap L^{s}(\mathbb{R}^{n})}, where{0<p\leq 1<s<\infty}, then there exists a{(p,\infty)}-atomic decomposition which converges tofin{L^{s}(\mathbb{R}^{n})}. From this result, we obtain that a bounded linear operatorTon{L^{s}(\mathbb{R}^{n})}can be extended to a bounded operator from{H^{p}(\mathbb{R}^{n})}into{L^{p}(\mathbb{R}^{n})}if and only ifTis bounded uniformly in{L^{p}}norm on all{(p,\infty)}-atoms. A similar result is also obtained from{H^{p}(\mathbb{R}^{n})}into{H^{p}(\mathbb{R}^{n})}.


2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1987 ◽  
Vol 39 (4) ◽  
pp. 880-892 ◽  
Author(s):  
Hari Bercovici

Kaplansky proposed in [7] three problems with which to test the adequacy of a proposed structure theory of infinite abelian groups. These problems can be rephrased as test problems for a structure theory of operators on Hilbert space. Thus, R. Kadison and I. Singer answered in [6] these test problems for the unitary equivalence of operators. We propose here a study of these problems for quasisimilarity of operators on Hilbert space. We recall first that two (bounded, linear) operators T and T′ acting on the Hilbert spaces and , are said to be quasisimilar if there exist bounded operators and with densely defined inverses, satisfying the relations T′X = XT and TY = YT′. The fact that T and T′ are quasisimilar is indicated by T ∼ T′. The problems mentioned above can now be formulated as follows.


1969 ◽  
Vol 16 (3) ◽  
pp. 227-232 ◽  
Author(s):  
J. C. Alexander

In (4) Vala proves a generalization of Schauder's theorem (3) on the compactness of the adjoint of a compact linear operator. The particular case of Vala's result that we shall be concerned with is as follows. Let t1 and t2 be non-zero bounded linear operators on the Banach spaces Y and X respectively, and denote by 1T2 the operator on B(X, Y) defined by


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


1979 ◽  
Vol 22 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Garret J. Etgen ◽  
Roger T. Lewis

Let ℋ be a Hilbert space, let ℬ = (ℋ, ℋ) be the B*-algebra of bounded linear operators from ℋ to ℋ with the uniform operator topology, and let ℒ be the subset of ℬ consisting of the self-adjoint operators. This article is concerned with the second order self-adjoint differential equation


1974 ◽  
Vol 26 (6) ◽  
pp. 1430-1441 ◽  
Author(s):  
Sandy Grabiner

Suppose that T and A are bounded linear operators. In this paper we examine the relation between the ranges of A and TA, under various additional hypotheses on T and A. We also consider the dual problem of the relation between the null-spaces of T and AT; and we consider some cases where T or A are only closed operators. Our major results about ranges of bounded operators are summarized in the following theorem.Theorem 1. Suppose that T is a bounded operator on a Banach space E and that A is a non-zero bounded operator from some Banach space to E.


1971 ◽  
Vol 23 (1) ◽  
pp. 132-150 ◽  
Author(s):  
Bernard Niel Harvey

In this paper we represent certain linear operators in a space with indefinite metric. Such a space may be a pair (H, B), where H is a separable Hilbert space, B is a bilinear functional on H given by B(x, y) = [Jx, y], [, ] is the Hilbert inner product in H, and J is a bounded linear operator such that J = J* and J2 = I. If T is a linear operator in H, then ‖T‖ is the usual operator norm. The operator J above has two eigenspaces corresponding to the eigenvalues + 1 and –1.In case the eigenspace in which J induces a positive operator has finite dimension k, a general spectral theory is known and has been developed principally by Pontrjagin [25], Iohvidov and Kreĭn [13], Naĭmark [20], and others.


Sign in / Sign up

Export Citation Format

Share Document