Development of an algorithm for the Earth remote sensing data classification using deep machine learning methods for analyzing the geosystem model of the territory

2021 ◽  
Vol 970 (4) ◽  
pp. 54-64
Author(s):  
S.A. Yamashkin ◽  
A.A. Yamashkin ◽  
V.V. Zanozin ◽  
A.N. Barmin

The authors propose their solving the task of improving the accuracy of remote sensing data classification under conditions of labeled data scarcity through using a geosystem approach that involves analyzing the genetic uniformity of various-scale territorially adjacent formations and hierarchical levels. The advantage of the proposed GeoSystemNet model is a great number of freedom degrees, which enables flexible configuration of the model based on the task being solved. Testing the GeoSystemNet model for classifying the EuroSAT set, algorithmically expanded from the perspective of the geosystem approach, showed the possibility of increasing the classification accuracy under the conditions of training data scarcity within 9 %, as well as approaching the accuracy of the deep ResNet50 and GoogleNet models. The authors note that the use of the geosystem approach according to the methodology proposed in the article for solving the above-mentioned problem requires an individual project approach to the formation of the data for analysis.

2008 ◽  
Vol 46 (6) ◽  
pp. 1822-1835 ◽  
Author(s):  
G. Camps-Valls ◽  
L. Gomez-Chova ◽  
J. Munoz-Mari ◽  
J.L. Rojo-Alvarez ◽  
M. Martinez-Ramon

2021 ◽  
Vol 3 ◽  
pp. 180-185
Author(s):  
Y. M. Kenzhegaliyev ◽  
◽  
◽  

The goal -is to explore ways of using Earth remote sensing data for efficient land use. Methods - detailed information on current location of certain types of agricultural crops in the study areas has been summarized, which opens up opportunities for the effective use of cultivated areas. It was revealed that the basis of the principle of the method under consideration is the relationship between the state and structure of vegetation types with its reflective ability. It has been determined that information on the spectral reflective property of the vegetation cover in the future can help replace more laborious methods of laboratory analysis. For classification of farmland, satellite images of medium spatial resolution with a combination of channels in natural colors were selected. Results - a method for identifying agricultural plants by classification according to the maximum likelihood algorithm was considered. The commonly used complexes of geoinformation software products with modules for special image processing allow displaying indicators in the form of raster images. It is shown that the use of Earth remote sensing data is the most relevant solution in the field of crop recognition and makes it possible to simplify the implementation of such types of work as the analysis of the intensity of land use, the assessment of the degree of pollution with weeds and determination of crop productivity. Conclusions - the research results given in the article indicate that timely information on the current location of certain types of agricultural crops in the studied territories significantly simplifies the implementation of the tasks and increases the resource potential of agricultural lands. In turn, the timing of the survey and the state of environment affect the spectral reflectivity of vegetation.


2020 ◽  
pp. 155-179
Author(s):  
Oleg Karsaev ◽  
Igor Shuklin ◽  
Sergey Yushchenko

An approach to the dynamic formation (adjustment) of schedules for distributed photogrammetric image processing in a network of ground centers included in the United geographically distributed information system for receiving and processing Earth remote sensing data from space is considered. Having the fullest satisfaction of requirements of consumers to the satellite images of necessary areas, the approach provides the formation of self-organizing B2B enterprises in the specified network providing information, software and hardware resources of the ground-based facilities of various departmental and other accessories for photogrammetric processing of any received images of the area from the the United geographically distributed information system. It is shown, that a search in B2B enterprise nodes and borrowing the required resources will allow ground centers to flexibly scale physical and virtual means of photogrammetric processing of Earth remote sensing data, quickly form their local structural and functional organizations depending on the current properties of the consumer requests flow for receiving Earth remote sensing data in the United geographically distributed information system, characteristics of the flow of terrain survey materials from orbital monitoring tools, and also take into account the visual and measuring properties of images of the area subject to photogrammetric processing. A method for truncating the set of potential performers of the application in accordance with the existing semantic and other restrictions on the composition of the desired set of performers is proposed. Also mechanisms to encourage ground centers to provide idle resources to B2B enterprise nodes are proposed. They are based on the possibility of receiving monetary or other remuneration from a ground center for participating in distributed application servicing. The development of a well-known model of a self-organizing B2B enterprise creates conditions for a more efficient organization of servicing the flow of applications in the United geographically distributed information system by attracting unused software, information and hardware resources of ground centers of various departmental affiliations.


Sign in / Sign up

Export Citation Format

Share Document